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Integration of multiple variables in a Gaussian context is remarkably useful: the required 
parameters can be inferred with relatively few data, the approach is simple and robust to 
implement, and data transformation schemes like the stepwise transformation can handle 
problematic relationships in a preprocessing step.  This note discusses a methodology and small 
program to gain insight into the importance of different variables.  The importance of multiple 
variables considered simultaneously is investigated. 

Introduction 

In multivariate geostatistical methods such as Bayesian updating, there can be a large number of 
secondary variables contributing to the estimation of some variable of interest.  Primary variable 
estimates are made by solving a set of normal equations where the variables are related through 
correlation coefficients.  The formalism is equivalent to simple cokriging.  Spatial information 
may be used in the prediction.  It is interesting to know importance of each variable.  The 
importance is not simply measured by the correlation between each secondary variable and the 
primary variable being estimated; redundancy between multiple correlated secondary variables 
must be accounted for.  The focus in this short note is documenting the importance of secondary 
data variables. 

Redundancy between multiple variables or multiple data at different data is a critical concept in 
estimation.  The normal equations (kriging) resolve redundancy with the correlation between the 
variables and what we are predicting in an optimal fashion; however, the resulting weights can be 
unstable and non-intuitive.  The techniques developed in this short note are aimed at the larger 
problem of the stability of the solution to simultaneous linear equations in the context of 
geospatial prediction. 

Normal Equations 

The normal equations (simple cokriging) are the formulation of a linear estimate of a primary 
variable with a corresponding measure of error variance.  In a multivariate Gaussian context, the 
estimate and variance are interpreted as the parameters of the conditional Gaussian distribution.  
In a non-Gaussian setting, the estimate is best according to a least squares criterion and the 
estimation variance is a measure of the data configuration.  In the multivariate geostatistics case, 
there are a number of secondary variables used to provide an estimate of a primary variable using 
correlation coefficients.  A linear system of equations is built from the correlation values between 
the secondary variables and themselves as well as between the secondary variables and primary 
variable, see Equation 1. 
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Where ρ11 to ρnn are the correlation values for the secondary variables (matrix A), λ1 to λn are the 
solutions or weights (matrix λ) and ρ1o to ρno are the correlation values between secondary 
variables and the primary variable (matrix B).  Each of the n data values could be a different 
variable at the same or different locations; the matrix would be singular if the same variable is 
measured twice at the same location.  The solution to this set of equation is found by inverting A 
and multiplying it by B: 

 1A B λ− ⋅ =  (2) 

In practice we do rarely invert the matrix.  The solution to a set of simultaneous linear equations 
is quickly established by other techniques.  The estimate and variance can then be defined by 
Equations 3 and 4: 
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Where Yi is the value of secondary variable i, and N is the total number of secondary variables.  
The 0 notation refers to what we are estimating.  One goal is to quantify the importance of 
different variables for a qualitative understanding.  Variables with little importance could be 
removed for the purpose of stabilizing the solution.  Future data collection campaigns could use 
the results of this analysis. 

Quantifying Importance 

A measure of the importance of variables used in a multivariate problem has been developed.  
The importance of a variable is measured as the deviation in kriging variance observed when that 
variable is removed from the system of equations, see Equation 5: 
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Where i is the variable removed, 2
,K iσ  is the kriging variance for that configuration, and 2

Kσ  is 
the kriging variance when all variables are considered. 

This relation was developed on the premise that the more a variable contributes to reducing the 
kriging variance, the more important it is.  A program was generated to analyze a given matrix by 
systematically removing each variable and solving for the weights.  The inverse matrix is 
calculated and output for analysis as well.  To explore combinations, the option to perform a full 
combinatorial analysis on the input matrix is available.  Variables are removed for every 
combination starting with 1 and progressing to N-2 where N is the total number of variables in the 
matrix.  This analysis should give insight into the redundancy of certain variable combinations. 
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For the case where 1 variable is removed, two correlation matrices were looked at: one with 3 
secondary variables and 4 primary variables and another with 8 secondary variables and one 
primary.  For the later case, Figure 1 displays the input left hand side (A) matrix, its inverse (A-1) 
and the solution (λ). 

Resulting importance measures are displayed using tornado diagrams, see Figure 2.  The 
importance measures have been centered at zero and initial kriging weights and correlation 
coefficients are shown for comparison purposes.  If we recall the two methods of removing 
variables when unacceptable weights result and apply them to the results for system 2 in Figure 2, 
we would not be removing variables of least importance.  Method 1 would initially eliminate 
variable 1, which is deemed most important.  With method 2 we would remove variable 5 first, 
which has been given a high importance measure as well. 

Importance measures of various variable-sets produced interesting results for the matrix of Figure 
1.  Variables were removed by sets of 1 up to sets of 6 and half-tornado charts were created in a 
MS-Excel spreadsheet, see Figure 3.  The output file from the program which will be explained 
later was imported into Excel as space delimited text and then conditionally formatted to shade in 
removed variables.  Half-tornadoes were calculated using the importance measure centered at 
zero, see Equation 6.  This equation normalizes the importance measure by the kriging variance 
of the system with no variables removed. 

 2 1 1NS S⎡ ⎤= ⋅ + −⎣ ⎦  (6) 

Where SN is the normalized importance measure and S is the importance as calculated by 
Equation 5. 

In Figure 3, the grid on the left indicates the variable set combination where darkened blocks are 
omitted variables.  Two trends are immediately visible: (1) as more variables are removed from 
the matrix, more patterns exist with higher importance, and (2) variable sets that include variable 
1 tend to be more important than others.  To reinforce trend (1), with six variables removed, the 
importance measure remains fairly consistent for all 28 combinations, see Figure 4.  Another 
aspect to note refers to the variables that remain in the matrix while others are removed: If the 
importance measure is lower, the remaining variables offer less redundancy.  This statement is 
developed from the notion that if the kriging variance increases dramatically (higher importance) 
when a variable is removed, the remaining variables may contain more redundancy, which tends 
to cause anomalous kriging weights and higher kriging variances. 

Importance of Spatially Correlated Data 

An additional study was carried out using covariance matrices for three spatial data 
configurations.  Configurations were developed in MS-Excel and covariance matrices were 
calculated using a spherical variogram with zero nugget effect and a range of 32 units.  
Positioning of conditioning data were selected to give one case with no apparent spatial issues, 
one with screening, and a third with the string-effect [1].  Figures 5 to 7 show the spatial 
configurations, covariance and inverse matrices and resulting importance tornado diagrams. 

In a spatial context, it seems that for most cases data receiving higher weights have a higher 
importance.  Results for the screening configuration are interesting in that the data receiving the 
highest weight was rated second-most important.  Another observation is that conditioning data 1 
and 6, which are furthest from the estimate, are deemed more important than data 2 and 5, which 
are somewhat closer.  When looking at the string effect configuration (Figure 7) data 1 and 6 at 
the ends of the string are deemed most important. 
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Inverse matrices for each configuration become more unstable when screening and the string-
effect are observed.  For the first configuration, magnitudes of inverse values rarely exceed 2, 
whereas with screening and the string-effect, we see magnitudes exceeding 4 and 10 respectively 
and ranging very close to zero. 

Numerical Stability 

The main purpose of this short note was to show how the importance of different variables could 
be quantified.  A secondary goal was to dig deeper into certain numerical instability problems that 
occur from time to time.  As with certain spatial data configurations with significant screening, 
this matrix equation (Aλ=B) could be somewhat unstable, which leads to unacceptably large 
positive and/or negative weights and erratic estimates.  In extreme cases, the estimation variance 
could be negative.  A standard approach is to iteratively remove highly redundant data or data that 
are poorly correlated to what we are predicting.  Data are removed and the solution recalculated 
until the results appear stable.  The following two cases are considered: 

1. If too high a weight results, the variable linked to that weight is removed and the system 
is resolved.  This is performed until all weights are acceptable.  Unacceptable weights are 
those beyond some absolute maximum. 

2. This case is similar to 1 in that an unacceptable solution is based on the production of 
high weights; however, instead of removing variables linked to the high weight, the least 
correlated variable is removed.  This process is carried out until all weights are below 
some absolute maximum. 

Both of these methods eventually result in a solution with acceptable weights; however, data is 
removed from the system with no real measure of its importance.  Variables that are potentially 
very important to an estimate could be removed while data of little importance may remain.  
When considering the second case, variables that correlate poorly with the primary variable are 
removed, but the problematic variable or combination there of may involve a high correlation 
coefficient. 

Program 

A program, krig_tests, was written to calculate the required estimation variances as well as 
the importance measure with various data removed.  The program parameters are as follows: 

 Line START OF PARAMETERS: 
 1 matrix.dat -File containing the matrices 
 2 1 -  matrix type: 1=spatial, 2=multivariate 
 3 2 -  number of variables to ignore 
 4 4    5 -  columns 
 5 7 -  column for the RHS matrix 
 6 0 -Single variable (0) or full combinatorial analysis (1) 
 7 0 -Number of variables, 0 for automatic 
 8 sensative.out -Name of output file for sensativity values 
 9 matrix_check.out -Name of output file for matrix checks 

Input for the program (Line 1) is a file containing the left and right-hand-side matrices together.  
If the matrix is for spatial data, the matrix input will typically have one more column for the right-
hand-side; however, if the matrix is that for multivariate analysis, the right-hand-side is typically 
located in a row as well as a column (the matrix is still square upon input).  An option to ignore 
variables is available as well (Lines 3 and 4).  For the analysis type, if only single variable 
analysis is selected (value of 0 for Line 6) then the matrix check output will show every inverse 



 115-5  

matrix for each removed variable.  If a full combinatorial analysis is done, only the initial input 
and inverse matrices are output.  If the number of variables is not indicated in the input file then it 
can be specified in Line 7. 

Output of the program is a file containing the  number of removed variables, the lexicographic 
combination of removed variables and the importance measure for that combination: 

 Line Output of variable orders and importance measures 
 1   8 
 2 Number Removed 
 3 Variable  1 
 4 Variable  2 
 5 Variable  3 
 6 Variable  4 
 7 Variable  5 
 8 Variable  6 
 9 Importance 
 10   1  1  0  0  0  0  0  0.033307 
 11   1  0  1  0  0  0  0  0.183239 
 12   1  0  0  1  0  0  0  0.033477 
 13   1  0  0  0  1  0  0  0.058244 
 14   1  0  0  0  0  1  0  0.027477 
 15   1  0  0  0  0  0  1  0.031448 

In the case of a full combinatorial analysis, the output is the same; however, the number of 
variables removed increases from 1 to N-2 where N is the number of variables.  The lexicographic 
combination indicators contain the same number of 1’s as there are variables removed and their 
position is associated to the variable they describe.  Looking at Line 13, there is one variable 
removed, that being variable 4 and the resulting importance is 0.058244. 

Conclusions 

The multiGaussian framework for data integration has proven remarkably useful for many years.  
We present a small program to calculate the importance of each variable by direct means – 
calculate the reduction in the estimation variance when the variable is dropped.  This was 
implemented for one variable at a time and for sets of multiple variables at a time.  In most cases, 
the single-variable sensitivity is sufficient; however, there are times when groups of secondary 
data are important.  In the presence of many secondary data (>10) or when the secondary data are 
highly redundant (ρ>0.95) the solution to the multiGaussian set of equations may become 
unstable. 
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Figure 1: Input (A), inverse (A-1), right-hand-side (B) and solution (λ) matrices for the 8-variable 
problem. 
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Figure 2: Importance tornado diagrams and associated right-hand-side correlation coefficients 
and solution weights. 
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Figure 3: Half-Tornado diagrams (right) of importance for removed variable sets (left).  Large 
numbers on the left indicate number of variables removed. 
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Figure 4: Combinatorial analysis results for 6 variables removed. 
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Figure 5: Estimate and conditioning data locations along with covariance (A), inverse (A-1) and 
right-hand-side (B) matrices for a problem-free configuration. 
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Figure 6: Estimate and conditioning data locations along with covariance (A), inverse (A-1) and 
right-hand-side (B) matrices for a configuration displaying screening effects. 
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Figure 7: Estimate and conditioning data locations along with covariance (A), inverse (A-1) and 
right-hand-side (B) matrices for a configuration showing the string effect. 
 


