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Abstract

Resource/reserve estimates are critical to any mining project. Mine productivity and equip-
ment selectivity must be balanced and considered in the estimation of recoverable reserves.
This has been a long-standing challenge in mining geostatistics stemming from the early
days of the discipline. Many techniques have been developed and others have evolved to
address this problem.

This paper reviews conventional and emerging approaches to resource/reserve estima-
tion. Specifically, change of support models, kriging, uniform conditioning and simulation
are considered. These different approaches are then illustrated using data from a gold de-
posit, and compared on the basis of a grade tonnage curve. This comparison revealed that
the indirect lognormal, discrete Gaussian model, uniform conditioning with kriging and
simulation yielded reasonable and comparative results. The use of kriging and the affine
correction performed poorly relative to the other methods. Guidelines for consideration and
implementation of these methods are provided.

1 Introduction

Recoverable reserves/resources are integral to all mineral projects. Different types of es-
timates are required at different stages of the mine life: global reserves are needed at the
project development stage, while local reserves are required for detailed mine planning and
pit optimization. While the estimation of resources is the same prior to the calculation of
reserves, the latter requires economic evaluation and pit/underground planning. Further,
this estimation is made more complex when one considers the underlying issues related to
equipment and the corresponding scale of production.

There is no doubt that recoverable reserves are a function of the selectivity that can
be achieved by the equipment being used. Large equipment is more productive than small
equipment, but this comes at the price of selectivity. Consequently, larger mining equip-
ment cannot distinguish ore and waste as easily or accurately as small mining equipment.
The selective mining unit (SMU) is the smallest volume of material on which ore waste
classification is determined [10]; hence it is a clear measure of the equipment selectivity and
has a large impact on the reserve calculation (see [4] for more information).

While SMU’s are necessarily the smallest volumes for production, reserves are calculated
for larger mine planning blocks, typically referred to as panels. Calculation of panel grades,
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Figure 1: Typical setting for reserve calculation: samples are represented by the X’s; the SMU’s
denote the small blocks, v; the panels as represented by the larger blocks, V ; and the deposit is
considered as the entire area, A..

tonnages, ore/waste classification, etc. are based on the constituent SMU’s within the panel.
The panel reserves can be further upscaled to provide an estimate of the reserves for the
entire deposit. Figure 1 shows a schematic illustration of the relation between these scales
of production, planning and reporting.

Achieving the balance between productivity and selectivity is certainly a challenge, yet
the effect of dilution due to scale of production presents another issue for consideration.
Consider assays from an exploration drilling program. There will typically be samples with
very low grades and samples with very high grades; these extreme values contribute to a
histogram with high variance. If the samples are composited to a larger scale, higher grade
material will be averaged with lower grade material. The effect of this averaging leads to
a histogram of composited data that has a lower variance than the assays (see Figure 2).
Clearly, the distribution of grades within the deposit changes as the size of the sample, or
block, increases.

Given these complex, inter-related issues, it is easy to see why so many different re-
source estimation methods have been developed for different deposit types and settings.
Incorporating scale effects in the resource estimate is critical. There are analytical change
of support models to correct the point scale histogram to one that approximates the SMU
scale histogram. Global resources can then be calculated directly from the upscaled his-
togram. Local resources can be estimated through linear, non-linear, and simulation based
algorithms. The local resources can be upscaled to get global resources.

This paper will compare some of the more common reserve estimation techniques on the
basis of (i) applicability, (ii) amount of time and effort required for implementation, and
(iii) accuracy of the results. A brief review of volume variance and resource calculation is
first presented; this is followed by a distinction between global and local resource estimation
methods. A small comparative example is also included.
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Figure 2: Change in the histogram with a change in the support size (redrawn from Deutsch,
2001).

2 Background

The scale issue remains a long standing challenge in geostatistics; certainly the mining
industry has struggled with its complexity since the pioneering work of Krige and Sichel in
the 1950s [5, 9]. Since that time, many researchers have worked to quantify the affect of
volume on the spatial variability of the phenomena, and how this translates to an effect on
the variability in the grades distribution.

2.1 Scale Effect on Variability

Gammabar. The average variogram or “gammabar”, γ (V, v), is a widely used measure
to estimate the variability of any arbitrary volume. Gammabar values represent the mean
value of γ(u) when the head of the variogram describes the block V (u) and the tail describes
the block v(u) where u is a location vector (see Figure 3). The blocks v and V may or
may not be the same size, they may be separated by some distance, and/or they may be
irregularly shaped.

Gammabar values can be calculated exactly with the following integral:

γ (V, v) =
1

V · v
∫

V (u)
dx

∫
v(u′)

γ
(
x − x′) dx′ (1)

Alternatively, the gammabar can be numerically approximated by a sextuple summation
(3 directions for each volume) taken over the discretization of the two volumes. This is
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Figure 3: Schematic illustration of two arbitrary volumes, v and V , separated by a lag distance,
h.

simple, relatively fast and works for any variogram type and size/shape of the volumes.
This flexibility makes the numerical approach the common modern approach.

Consider the case of calculating the gammabar of a volume with itself. If the volume
v is very small, say a point support, the γ (v, v) will be equal to zero since the separation
vector, h, will equal zero. In contrast, consider now a much larger volume, say the domain
A, discretization of this volume into many points for numerical integration will involve
averaging the variogram of points separated by very large separation distances, h; this
results in a γ (A,A) equal to the variance of the field. Thus as the volume increases, the
gammabar values will also increase and tend towards the variance of the field.

Dispersion Variance. The dispersion variance, D2(v, V ), is a measure of the variability
of the small volume v within a larger volume V . The additivity of variance property was
used to establish Krige’s relation [2, 3]:

D2 (v,A) = D2 (v, V ) + D2 (V,A) (2)

Therefore, the variance of the small blocks v in the area A is equal to the variance of the
small blocks v within the big blocks V plus the variance of the big blocks V in the area A,
that is v ⊂ V ⊂ A. This equation can be rearranged to solve for any of the terms.

Dispersion variances can be estimated in one of two ways: (1) use the available data
and estimate the block variance by upscaling the data directly, and (2) estimate the block
variance using the fitted variogram model. Ideally, both methods would be used and any
differences reconciled. However, there is usually insufficient data to perform method 1. As
a result, method 2 has become the accepted default practice for estimating block variances.

Any dispersion variance can be estimated using the gammabar approach. Each disper-
sion variance calculation requires two gammabar values: one for the large volume and one
for the small volume. The dispersion variance is [3]:

D2 (v, V ) = γ (V, V ) − γ (v, v) (3)

Note that any dispersion variance estimated with the variogram is sensitive to the nugget
effect. A sensitivity study should be performed when there is a large amount of uncertainty
in the modeled variogram parameters.
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2.2 Recoverable Reserve Calculation

We have already seen how a change in volume affects the spatial variability of the grades (as
characterized by the variogram), and the corresponding affect on the grades distribution. Of
course, a change in the grades distribution must necessarily impact the recoverable reserves
calculation. This section is dedicated to the different approaches for reserves calculation.

A mining operation can never recover all of the in-situ resources. Some portion of the
deposit will be inaccessible or unprofitable to mine. Recoverable reserves are a subset of
the resources that can be economically and technically mined.

Assume that we only want to select material with a grade above a specified minimum
grade, or cutoff grade, zc. The cutoff grade can be defined based on any number of consid-
erations. A simplistic formula that can be used is:

zc =
ct + (co − cw)

p · r (4)

where ct is the cost of milling, co is the cost of mining ore, cw is the cost of mining waste,
p is the metal selling price, and r is the fraction of metal recovered during processing. The
deposit is classified into ore and waste using the cutoff grade.

Histogram Based. Recoverable reserves can be estimated directly from a histogram.
The tonnage, quantity of metal, and average grade of the ore can be calculated. The area
that the histogram represents and the support volume for the histogram impact the reserves.

Let T0 be the total tonnage of the deposit. The recovered tonnage is:

TA (zc) = T0 · [1 − FZ(zc)] = T0 ·
∫ +∞

zc

fz(z)dz (5)

where fz(z) is the probability density function or frequency distribution of the grades. The
quantity of metal can then be calculated as

QA (zc) = T0 ·
∫ +∞

zc

zfz(z)dz (6)

and the mean grade of the recovered material is given by

MA (zc) =
QA(zc)
TA(zc)

(7)

The impact of the selection volume can be understood by performing this analysis for
different selection volumes. The expected result is that as the selection volume increases,
the number of tonnes will increase and the average grade will decrease.

The spatial continuity of the variable also impacts the calculated reserves through the
dispersion variance. Reserves for continuous variables will not change substantially as the se-
lection volume increases; whereas, reserves for variables that are not continuous will change
drastically as the support volume increases.

Only global reserves can be calculated using the histogram based approach. It provides
an estimate of the reserves for a given volume where the data is representative.
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Block Based. Let us assume that we only want to select SMU’s with a grade above a
specified minimum grade, or cutoff grade, zc. This leads to the definition of an indicator
function that classifies the SMU as ore or waste according to:

iv (uβ; zc) =

{
1 if zv (uβ) > zc

0 otherwise
(8)

where uβ refers to the SMU centered at location uβ, zv (uβ) is the grade of the SMU, and zc

is the cutoff grade. The tonnes of ore above the cutoff grade for any panel can be calculated
using the indicator function and the SMU tonnage:

TV (uα; zc) =
Nv∑
β=1

iv (uβ ; zc) tv(uβ) uβ ∈ uα (9)

where TV (uα; zc) is the tonnage of ore above the cutoff grade for panel V centered at
location uα, tv(uβ) is the tonnage of the SMU at uβ, and β = 1, . . . , Nv where Nv is the
number of SMU’s contained within the panel, V . The quantity of metal above the cutoff
grade is:

QV (uα; zc) =
Nv∑
β=1

iv (uβ ; zc) · tv(uβ) · zv (uβ) uβ ∈ uα (10)

The mean grade of the ore is given by:

MV (uα; zc) =
QV (uα; zc)
TV (uα; zc)

(11)

The resource estimate for each panel can be upscaled for a global resource estimate.

TA (zc) =
NV∑
α=1

TV (uα; zc) uα ∈ A

QA (zc) =
NV∑
α=1

QV (uα; zc) uα ∈ A

MA (zc) =
QA(zc)
TA(zc)

S

where α = 1, . . . , NV and NV is the number of panels within the deposit, A.
Recoverable reserves calculated from a block model should be similar to the reserves

calculated from a histogram. The block based reserves will take more time to produce, but
more can be done with the block model; i.e. mine planning and selective reserves within a
constrained area.

3 Global Reserve Estimation

Global reserves are used for disclosure and financial purposes. At this stage, the location of
the reserves within the deposit is not critical. Ensuring that the total recoverable reserves
are accurate is the most important criteria at this stage.
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It is common practice to estimate recoverable resources directly from the grade his-
togram [2]. However, the histogram of the sample data is not representative of the blocks
that will be mined. A correction needs to be applied to the histogram to account for the
larger blocks that will actually be mined. Many case studies have been published showing
that very good results can be achieved with this method [8].

Recall that the variance of blocks within the deposit can be estimated using dispersion
variance theory. Change of support models use this block variance to alter the sample
histogram so it represents the blocks that will actually be mined. There are several common
change of support models: (i) affine, (ii) indirect log-normal, and (iii) discrete Gaussian
model. The different change of support models are applied in similar manners. However,
each change of support model makes different assumptions regarding the point to block
bivariate relationship and the corresponding shape change of the histogram.

All change of support models make two common assumptions: (1) the variance decreases
as the volume increases, and (2) the mean does not change from one scale to the next. Each
model assumes a different shape change as the volume increases. This is an important
consideration when choosing the change of support model to use.

3.1 Volume Variance Relations

As the block size increases, the variance decreases. We can define a change of support
parameter, or variance reduction factor f , for use in the change of support calculation. Let
us define the reduction factor f as the variance of the larger volume over the variance of
the smaller volume:

f =
D2 (v,A)
D2 (·, A)

(12)

Recalling the additivity of dispersion variances of Equation (2), we can solve for D2 (v,A):

D2 (v,A) = D2 (·, A) − D2 (·, v) (13)

Substitution of this into Equation (12) reveals

f =
D2 (·, A) − D2 (·, v)

D2 (·, A)
(14)

= 1 − D2 (·, v)
D2 (·, A)

(15)

Recall that D2(·, A) is the variance of the points in the deposit A, or σ2, and that D2(·, v)
is the variance of the points within the blocks v, or γ(v, v):

f = 1 − γ(v, v)
σ2

(16)

Therefore, f is a function of the modeled variogram and the variance of the points within
the deposit. The variance reduction factor is used for the affine variance correction and the
indirect lognormal correction.
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3.2 Affine Change of Support

The affine change of support model assumes that the shape of the histogram does not change
and the variance is reduced by f . The reduction in variance is achieved by:

q′ =
√

f · (q − m) + m

where q is the quantile of the original value in the point scale distribution, m is the mean
of the distribution, and q′ is the quantile in the corrected block scale distribution.

The assumption that the shape of the histogram does not change is unrealistic. Because
of this assumption, the affine correction introduces artificial minima and maxima and the
shape of the resulting histogram is poor. The affine change of support model is only valid
for small variance reductions, that is, f ≥ 0.7.

Recoverable reserves can be calculated using the affine corrected distribution with the
histogram based approach from Section 2.2.

3.3 Indirect Lognormal Change of Support

The indirect lognormal correction is the change of support model that should be used if
the point and block distributions were lognormally distributed. It is more realistic than the
affine correction as it assumes there is a change in the histogram shape.

The indirect lognormal correction needs to be applied in two steps. The first step in the
correction is the variance reduction:

q′ = aqb (17)

where q is the original quantile, q′ is the variance corrected quantile, and

b =

√
ln(f · CV 2 + 1)
ln(CV 2 + 1)

(18)

a =
m√

f · CV 2 + 1)

[√
CV 2 + 1

m

]b

(19)

The second step is to correct the mean of the block distribution back to the mean of the
point distribution:

q′′ = q′
m

m′ (20)

where q′′ is the final corrected quantile, m is the mean of the original distribution (also the
target mean) and m′ is the mean after the first correction.

The indirect lognormal correction is more realistic than the affine correction for log-
normal distributions. It assumes an arbitrary shape change and does not impose artificial
minima and maxima. Larger reductions in variance can be achieved with the indirect log-
normal correction, f ≥ 0.5.
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3.4 Discrete Gaussian Model

The discrete Gaussian model (DGM), is used for change of support at different scales. It
is a function defined by a polynomial expansion that needs to be fit to the data. Once the
polynomials have been fitted, the function provides a mapping of the point variable Z to
the Gaussian variable Y and vice-versa:

z(u) = Φ(y(u))

≈
np∑

n=0

φnHn [y(u)] (21)

where np is the highest order term in the polynomial expansion, φn is a fitted coefficient
for each term, and Hn [Y (u)] is the hermite polynomial value defined by the term of the
expansion and the y value. Equation (21) is referred to as the Gaussian anamorphosis.

Hermite polynomial’s are defined by Rodrigues’ Formula. The polynomial value can be
calculated for any value of y and for any polynomial order n using the following formula:

Hp(y) =
1√

p! · g(y)
· dpg(y)

dyp
(22)

For example, the first 6 Hermite polynomials are:

H0(y) = 1 H3(y) = − 1√
6
(y3 − 3y)

H1(y) = −y H4(y) = 1
2
√

6
(y4 − 6y2 + 3)

H2(y) = 1√
2
(y2 − 1) H5(y) = − 1

2
√

30
(y5 − 10y3 + 15y)

After the zero and first order polynomials have been calculated, the following recursive
formula can be used to calculate the higher order polynomials, Hp(y), when p ≥ 2:

Hp+1(y) = − 1√
p + 1

yHp(y) −
√

p

p + 1
Hp−1(y)

We now need to calculate the φ coefficients to finish fitting the anamorphosis function.
The first order coefficient is:

φ0 = E{φ(Y (u))}
= E{Z(u)} (23)

or the expected value of Z(u). Higher order φ coefficients can be calculated using:

φp = E{Z(u) · Hp(Y (u))}
=

∫
φ(y(u)) · Hp(y(u)) · g(y(u)) · dy(u) (24)

The last expression can be approximated with the data at hand, as a finite summation:

φp ≈
N∑

α=2

(z(uα−1) − z(uα)) · 1√
p
Hp−1(y(uα)) · g(y(uα)) (25)
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The fitted φ coefficients must satisfy the following equality:

V ar {Zu} =
np∑

n=1

φ2
n (26)

where V ar {Zu} is the variance of Z at the point support. If the summation is significantly
different, the anamorphosis modeling should be checked.

There are two checks that can be done to determine the validity of the modeled anamor-
phosis function: (1) by comparing the Z to Y transformation function and (2) by comparing
the global distribution from the data to the distribution from the anamorphosis. An exam-
ple of the two plots are shown in Figures 4 and 5. The experimental anamorphosis is shown
as a thin line with the modeled anamorphosis shown as a thick dashed line. The original
grade distribution is shown as the bar histogram and the fitted distribution is shown as a
line. The experimental and modeled anamorphosis functions should be identical, and the
properties of the two distributions should be similar.

The discrete Gaussian model is used for estimating the change of support from point
scale to block scale for a variable. The variability and shape of the block scale distribution
is controlled by the anamorphosis.

This anamorphosis function (Equation 21) can be modified to account for the change of
support from point data to block data by the addition of a change of support coefficient r:

Z(v) = Φ(Y (v))

≈
np∑

n=0

rnφnHn [Y (v)]

By calculating the value of r, we can determine the distribution of grades for volumes of
support larger than the point samples.

The calculation of r requires the variance of the larger support volumes. Typically, there
is not enough data available to do this explicitly. The variance of the larger blocks can be
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estimated using the modeled variogram of the point data. Dispersion variance theory gives
us the following relation:

σ2
v = σ2

u − γ̄v,v

where v is the SMU support volume and u is the point support volume. Therefore we can
calculate the variance of the larger blocks using the modeled variogram. Recall Equation 26:

V ar {Zu} =
np∑

n=1

φ2
n

Since this equality must be true for the point support, it must also be true for the block
support. By including r in the equality, the equation becomes:

V ar {Zv} = σ2
v

= σ2
u − γ̄v,v

=
np∑

n=1

r2nφ2
n (27)

where V ar {Zv} is the variance of Z at the SMU support. The only unknown parameter
is r. Any optimization method can be employed to find the value of r. A bisector search
method is used in the DGM program written at CCG.

After calculating the change of support coefficient, the block scale distribution can be
estimated. Global reserves are then estimated using the upscaled block distribution. The
discrete Gaussian model is a fairly robust upscaling algorithm. It makes the assumption
that the distribution tends to a Gaussian shape as the variance at the block scale decreases.

4 Local Resource Estimation

Although global resource estimation techniques can be used at initial mine evaluation
stages, they cannot be used when considering local areas in the mine. Pit optimization
and short/long term planning require local estimation of the grades. Global reserves can
be calculated using the local estimates and compared with the global reserves calculated
previously.

Local resource or reserves are calculated using an estimation technique, such as ordinary
kriging, or a simulation technique, such as sequential Gaussian simulation. The estimates
are made directly, by kriging or simulating blocks that will become the SMU’s at the time of
mining, or indirectly, by estimating larger planning blocks and then estimating the reserves
within the larger mining panels. The different methods and implementation suggestions are
presented below.

4.1 Kriging

Kriging can be used to estimate the grade of the SMU sized blocks directly. These blocks
are used for classification and reserve calculation. It is a fast way to get recoverable reserves.
However, when the drill hole data are widely spaced relative to the blocks being kriging
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significant smoothing can be introduced. This large degree of smoothing will make the
calculated reserves unreliable [3].

There are many flavors of kriging available: (1) simple kriging, (2) ordinary kriging,
(3) multiGaussian kriging, (4), disjunctive kriging, (5) lognormal kriging, and (6) indicator
kriging.

Simple and ordinary kriging work with the data in its original units. The estimates are
a linear combination of the data using the modeled variogram to calculate the weights. As
mentioned earlier, kriging smoothes the estimates and can introduce a bias when estimating
blocks that are small relative to the data spacing.

Krige and Assibey-Bonsu have proposed a correction for simple kriging that allows the
direct estimation of SMU sized blocks that corrects for the smoothing effect of kriging [1].
The case study presented in their paper shows that the correction allows an unbiased esti-
mation of the reserves.

Multi-Gaussian kriging uses the normal score transformed values of the data. The block
estimates are calculated in Gaussian space and then need to be back transformed. An
advantage of this method is that the conditional distributions for each block are known.

Disjunctive kriging describes a flavour of kriging that uses simple kriging to estimate
the Hermite polynomial values at unsampled locations [7]. The estimate is given as a
linear combination of these estimated values, and weighted by the coefficients of fitting the
global distribution [6]. This method is quite flexible, allowing for use of different isofactorial
models to be used; however, the lack of simple programs has hindered its implementation
in practice.

Lognormal kriging works with the log transformed values of the original data, and
has found application when the original data are positive valued and especially if it is
positively skewed [11]. A logarithmic transform is applied to the data to normalize it, any
kriging method can then be applied to generate estimates in normal scores. This seems
straightforward, however, the problem arises in the back transformation when any errors in
the estimate or estimation variance can be exponentially magnified [11]. Further, deviations
of the original data from lognormality may invalidate its use.

The block scale CDF can be estimated using indicator kriging. Multiple cutoffs are
applied to the data and the indicators are kriged. Each block requires p kriging equations
to be solved, where p is the number of cutoffs. The resulting estimates define the block
scale CDF in original units. Median indicator kriging is a subset of indicator kriging.
Indicator kriging requires a separate variogram for each cutoff, while median indicator
kriging assumes that each cutoff has the same variogram. The assumption may or may not
be valid depending on the data.

4.2 Uniform Conditioning

Recall that kriging small blocks in relation to the data spacing can be problematic. However,
we can krige larger blocks, called panels, to reduce the possibility of biased estimates.
Uniform conditioning estimates the distribution of the SMU’s within each estimated panel.
In other words, given that we know the grade of a large block, the panel that has been
estimated, we can calculate the distribution of the SMU’s that are in the panel. Recoverable
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reserves are calculated using the SMU distribution that has been derived from the panel
estimate and the change of support model.

A change of support model is needed to estimate the SMU block distribution within each
panel. Uniform conditioning uses the discrete Gaussian model to accomplish the change of
support.

There are a few limitations to the uniform conditioning method. One is that it does not
provide any spatial location for the SMU’s contained in each panel. The high grade SMU’s
and the low grade SMU’s could be anywhere. The second limitation is that two panels with
the same estimated grade will have the same reserves irrespective of surrounding data.

4.3 Conditional Simulation

All of the local reserve estimation techniques presented so far provide an estimate of the
reserves. They do not provide a distribution of uncertainty in the estimate. Conditional
simulation allows us to generate multiple realizations to assess both global and local uncer-
tainty in our model.

The very first simulation techniques generated unconditional Gaussian simulations. Such
methods include turning bands simulation, moving average techniques and LU simulation.
The unconditional Gaussian simulations then needed to be conditioned to the data using
kriging. This method is theoretically correct but it involves 2 distinct steps.

Modern simulation methods do not need to be performed in 2 steps. They are capable
of simultaneously generating a simulated realization and conditioning to the data. The
most common simulation algorithm currently is sequential Gaussian simulation. Working
within the Gaussian paradigm first requires a Gaussian transformation of the data. The
transformation, if done incorrectly, can impact the results of the simulation. Indicator sim-
ulation infers the shape of distribution and draws stochastically from it, but this requires
a non-linear transform of the data to indicator variables at different thresholds. Too few
thresholds results in a poorly inferred shape, while too many thresholds requires more pro-
fessional time and effort in inference of variogram parameters. Direct sequential simulation
is a relatively new algorithm under development that does not require data transformation.

4.4 Upscaling Local Resources for Global Resources

Aside from a local distribution of uncertainty, the move towards simulation from traditional
estimation methods allows one other advantage. A realization of simulated values can be
directly upscaled to any arbitrary volume and the change in resources/reserves evaluated
directly. No change of support model is required, hence no distributional assumptions are
imposed.

Upscaling in this instance generally involves taking the simulated grid and averaging
all relevant blocks within the volume of interest. For instance, if the panel volume repre-
sents a monthly production period, only those blocks within the production area need to be
considered and averaged. As before, the panel volume need not be regular, polygons may
be considered that may or may not be contiguous regions within the deposit representing
multiple advancing faces in production. This averaging of multiple simulated grades yields
the panel grade. Repeating this averaging process over multiple realizations yields a dis-
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tribution of uncertainty in the panel grade; thus, the variance of this panel grade can be
directly obtained.

The extension of this process for increasing volumes up to the deposit size is straight-
forward, making global resource estimation using simulated realizations quite simple. In
practice, the biggest limitation to this approach is the computational effort to generate and
store these multiple realizations; however, as computers become faster and storage becomes
less of an issue, it is only a matter of time before these issues are resolved.

5 Case Study

A full case study was completed using a data set provided by Placer Dome Technical Ser-
vices. The particulars of the mine will be kept confidential.

Four methods were used to calculate recoverable reserves for the case study: (1) change
of support models, (2) ordinary kriging, (3) uniform conditioning, and (4) simulation. The
results from each method will be used to calculate a grade tonnage curve. All of the grade
tonnage curves will be compared to see if any methods are substantially different than
average.

The SMU size for the study is 10x10x10m, and the panel size, for uniform conditioning,
is 60x60x20m. The following steps were done as part of the reserve estimation:

� exploratory data analysis,

� spatial continuity analysis,

� direct estimation of the global resources,

� kriging for global resources,

� uniform conditioning for global resources,

� conditional simulation for global resources, and

� comparison of the results.

The results from each step are documented below and issues discussed.

5.1 Data

The topography model of the existing mine was provided by Placer Dome. Although this
information will not be used for this project, it was used to get a better understanding of
the mining operation. The topography is shown in Figure 6.

The composited drillhole data contains the x, y, and z locations of each composite along
with the gold and silver grades. This was imported into GOCAD for visualization purposes
(Figure 7). Figures 8 and 9 show the drillhole data with the mine topography. Figure 10
shows a plan view of the entire drill hole data set. Very litte information can be gleaned
from this figure. Figure 11 shows the same plan view, but only the samples that are at an
elevation of 200m. It is easy to see on the graph that the higher grade areas are located
towards the middle of the deposit with the lower grades at the extremities. Figure 12 shows
a vertical cross section of the deposit.
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Figure 6: Topography of the existing mine.

Figure 7: Drillhole data set.
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Figure 8: Topography and drill holes.

Figure 9: Topography and drill holes.
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Figure 10: Plan view of all the drill holes.
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Figure 11: Plan view of bench 200.
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Figure 12: Vertical cross-section looking west at 2000 meters East.
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Figure 13: Gold grade histograms.

5.2 Exploratory Data Analysis

The goal of the exploratory data analysis is to get representative statistics for the variables
in the deposit. The important mineral for this study is gold.

The average gold grade is 0.44 with a variance of 1.66. Figure 13 shows the gold
histogram. The histogram on the left has an arithmetic axis, while the histogram on the
right has a lognormal axis. The latter plot shows that the gold distribution is close to being
lognormal.

Samples are almost always collected in a spatially biased fashion. Declustering is used to
determine statistics that are representative for the entire deposit from the biased samples.
A declustering cell size of 150m was chosen using the plots in Figure 14 and the average
data spacing in the sparsely sampled areas. The declustering results are shown in Figure 15.
As expected, the mean and variance for the gold and silver has decreased.

5.3 Normal Score Transformation

Sequential Gaussian simulation and the discrete Gaussian model for change of support
require the data to be standard normal. This means the data must follow a normal distri-
bution with a mean of zero and a variance of one. The gold grades were twice transformed
to normal scores. The first time the declustering weights were not used. These normal
score values will be used for calculating variograms. The declustering weights were used
for the second transformation. These normal score values will be used for the conditional
simulation. Figure 16 shows the normal score gold grades.
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5.4 Variogram Analysis

The real space experimental variograms showed pure noise; changes to the the lag spacing,
tolerance, or minimum number of pairs made little difference to ease model inference. Fig-
ure 17 shows the poor quality of the real space variogram maps. The spatial continuity is
much easier to see in the normal score variogram maps (Figure 18). The major direction of
continuity was chosen as -10� azimuth from north, the minor direction is 80� azimuth from
north and the vertical variogram is straight down.

Since the calculated variograms for the original gold variable were pure nugget, some
alternate measures of spatial continuity were evaluated. Specifically, correlograms, pairwise
relative and the covariance were also analyzed; using a combination of these measures, the
following real space gold variogram was obtained (see Figure 19):

γ (h) = 0.25 + 1.12 · exphmax=85
hmin=60
hvert=17

(h) + 0.3 · sphhmax=440
hmin=120
hvert=250

(h)

The normal score variograms were much better behaved than the real space variograms.
There was no need to consider a robust variogram measure. The experimental normal score
variogram is shown in Figure 20. The normal score gold variogram model is:

γ (h) = 0.15 + 0.52 · exphmax=60
hmin=55
hvert=90

(h) + 0.3 · sphhmax=1300
hmin=350
hvert=270

(h)

5.5 Direct Estimation of the Global Resources

The variance of blocks within the deposit was estimated using the modeled real space
variograms. Table 1 contains the gammabar value for the SMU sized blocks, the estimated
variance of the blocks within the deposit, and the variance reduction factor for the change
of support calculation.
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Figure 18: Normal space variogram maps.

Table 1: Dispersion variances.

γ(v, v) σ2(v, A) f
SMU 0.452 0.530 0.540

These values were used to estimate the block scale distribution through the 3 change
of support models previously documented. The results of the affine change of support are
shown in Figure 21, the results for the indirect lognormal change of support are shown in
Figure 22, and the results for the discrete Gaussian model are shown in Figure 23. All
of the figures have the original gold grade histogram on the left and the volume corrected
histogram on the right. The indirect lognormal and the discrete Gaussian histograms look
good, while the affine corrected histogram does not look very good. This is because the
affine change of support assumes that the histogram shape does not change.

5.6 Kriging for Global Resources

Ordinary kriging was used to estimate the grade for the SMUs directly. This was not
expected to give good results but was done for comparison purposes. Figure 24 shows the
kriged SMU gold grades. The kriged panel estimates are shown in Figure 25. The panel
estimates will be used for the uniform conditioning.

5.7 Uniform Conditioning for Global Resources

The panel estimates were used to calculate reserves with uniform conditioning. The reserves
were calculated for each panel and the results upscaled to provide global reserves.

5.8 Conditional Simulation for Global Resources

Sequential Gaussian simulation was used to build conditional simulations of the gold grade.
The first step was to generate 51 realizations of the gold grade at a fine scale, and then
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Figure 19: Real space modeled gold variogram.
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Figure 20: Normal score modeled gold variogram.
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Figure 21: Affine corrected histogram.
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Figure 22: Indirect lognormal corrected histograms.
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Figure 23: Discrete Gaussian model corrected histograms.
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Figure 24: Ordinary kriging of the SMU’s directly.

Figure 25: Ordinary kriging of the panel grades for uniform conditioning.

301 – 25



Figure 26: Back transformed simulation, block averaged to the SMU blocks.

upscale the results to the SMU blocks. Simulating to a very small block and then block
averaging up to the larger SMU sized blocks allows for the change of support to be accounted
for directly. Figure 26 shows one realization of the block averaged gold grades.

5.9 Comparison of the Results

Now we can calculate and compare the grade tonnage curves for the different methods.
The grade tonnage curves for gold are shown in Figure 27. The solid black line shows the
average grade tonnage curve for the simulation results, the dashed black line shows the
90% probability interval (P05-P95) from simulation and the other coloured lines represent
the other methods. A number of important observations can be made: (1) the simulation
results match very closely with the uniform conditioning results, (2) the discrete Gaussian
and indirect lognormal change of support models are very similar to the simulation results,
and (3) the affine change of support and the ordinary kriging results are poor. The change
of support models are dependent on the parameters that define the change in variance, and
thus can change dramatically with a small change in the variogram. In other words, the
change of support models could be made to match the simulated results even better with
revised change of support parameters. Figure 28 is a close up of the grade tonnage curve.

For interest sake, the e-type from the simulation results (that is the local average over
all realizations) were also considered and the corresponding grade tonnage curve calculated.
The grade tonnage curve is shown in Figure 29. Note that the e-type grade tonnage curve
is very similar to the kriging curve. It does not provide a good estimate of the recoverable
resources. Rather than averaging the grades and then calculating the grade tonnage curve
(as done here), one should calculate the grade tonnage curve associated to all realizations,
and then take the average of the grade tonnage curves (as illustrated by the black line on
the plots).
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Figure 27: Grade tonnage curve.
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Figure 28: Close up of the grade tonnage curve.
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Figure 29: Average simulation grade tonnage curve or average grade tonnage curve.

6 Discussion and Conclusions

Recoverable reserves are vital during project development stages. Mining companies will
invest millions of dollars to develop a mine using an estimate of the recoverable reserves.
Over or under estimating the reserves can result in the a huge loss to the mining company.
To make the process harder, there are many different methods for calculating recoverable
reserves from which to choose.

Data based methods use the data at hand and a change of support model to estimate the
SMU block distribution over the entire deposit. Recoverable reserves can then be calculated
using the upscaled histogram. The affine change of support model makes an unreasonable
assumption that the histogram will not change shape as the support volume increases. For
this reason, the affine model is not recommended. The indirect lognormal model assumes
that the point scale distribution and the block scale distribution are lognormal. The shape
of the histogram does change as the support volume increases. The indirect lognormal model
will produce acceptable results when the data are approximately lognormal. The discrete
Gaussian model works on the normal score transform of the data and a fitted polynomial
to perform the change of support. The discrete Gaussian model can be fit to almost any
input distribution, but it makes the assumption that the distribution tends to Gaussian as
the block size increases. It also produced good results.

Ordinary kriging of the SMU blocks did not produce good results. The smoothing effect
of kriging, and estimating small blocks in relation to the data spacing produced a biased
estimate of the recoverable reserves.

Ordinary kriging of the larger panels and then using uniform conditioning produced
good results. The panel estimates are more robust than the smaller SMU estimates and
uniform conditioning correctly estimated the SMU distribution within each panel. However,
uniform conditioning does not provide a spatial location for the SMU sized blocks. This
makes it difficult to do a proper mine plan or pit optimization compared to a block model
at the SMU scale.
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Sequential Gaussian simulation produced good results. The benefit of simulation is the
ability to assess local and global uncertainty. The simulation results matched very closely to
the change of support models and uniform conditioning. The downside of simulation is that
it takes more time to generate and postprocess the realizations compared to the histogram
based methods, or uniform conditioning.

Averaging, or the expected value, is useful for presenting a summary of a full scale sim-
ulation study. However, care must be taken to ensure that the expected value is taken at
the correct moment. The expected value must be taken after any non-linear transformation
or transfer functions. For recoverable reserves, that means the expected value of the real-
izations should not be calculated before the grade tonnage curve, the expected value should
be taken from the multiple grade tonnage curves calculated from the multiple realizations.

Direct simulation methods presents some interesting possibilities for reserve estimation.
The avoidance of data transformation should make it easier to interpret, while the added
benefit of directly simulating any arbitrary volume can mitigate the computationally expen-
sive post-processing of multiple realizations. There are working versions of direct sequential
simulation available. Future work in this area should include a comparison of DSS with
conventional reserve estimation techniques.
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