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Indicator based geostatistical techniques provide great flexibility to integrate soft data and 
account for more complex spatial features than conventional Gaussian techniques.  A 
longstanding problem, however, has been order relation deviations partly caused by 
inconsistently modeled indicator variograms.  The bivariate distributions summarized by 
indicator variograms must be valid distributions, that is, there can be no negative probabilities, 
the probabilities must sum to one and the corresponding marginal distributions must be 
reasonable.  These consistency constraints are derived and quantified.  Indicator variograms can 
be checked and the constraints used in semiautomatic fitting of indicator variograms. 

Typical implementations of indicator kriging and simulation consider independent kriging of 
each category/threshold.  Cokriging with cross covariances is avoided primarily because of 
awkward inference and modeling.  The semiautomatic fitting permits all direct and cross 
variograms to be fit simultaneously.  We implement full indicator cokriging as an option in 
indicator kriging and simulation, which brings potential benefits. 

Introduction 

Indicator techniques are commonly used for categorical variables such as facies and rock types.  
The indicator variogram for each rock type is unique, which provides flexibility to capture the 
architecture of different rock types.  It is also straightforward to account for locally varying rock 
type proportions through non-stationary simple kriging.  Indicator methods such as indicator 
kriging (IK) and sequential indicator simulation (SIS) are well suited to settings where the rock 
types are structured, but with no clear geological object shapes.  Object-based modeling would be 
suitable for clear geologic shapes. 

Continuous variables are also modeled with indicator techniques.  Gaussian techniques are 
simpler, but are less flexible than indicator techniques such as IK and SIS.  The spatial continuity 
patterns of the low, median and high values tend to be different.  Indicator techniques permit the 
different variograms for different thresholds.  Secondary data are easily coded as soft indicator 
data for integration with a form of cokriging or non-stationary kriging. 

Multiple point statistics (MPS) permit complex spatial variation patterns to be imposed on 
geostatistical models; however, they call for a training image and do not use statistics such as 
variograms calculated directly from the available hard data.  MPS are relevant when a deemed 
reliable training image is available and all available hard and soft data can be integrated.  
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Notwithstanding the availability of alternate techniques, there are cases where indicator based 
methods are suitable and appropriate. 

This paper is concerned with the best practice of implementing indicator methods.  In particular, 
this paper is concerned with the bivariate spatial law implicit to the modeled indicator variograms 
and cross variograms.  The current practice of independently modeling the indicator variograms 
for different rock types or thresholds makes it easy to create an implausible spatial law, that is, 
bivariate distributions that have negative probabilities or inconsistent univariate distributions.  We 
derive the constraints on the indicator variograms and show how they can be used to check 
available indicator statistics or included in semiautomatic variogram fitting 

Spatial Correlation of Categorical Variables 

Many principles of indicator statistics are the same with categorical variables and continuous 
variables; however, their definition and how they discretize a probability distribution are quite 
different.  An indicator for a categorical variable is 1 if it is present and 0 if not, which is like a 
discrete probability coding.  An indicator for a continuous variable is 1 if the value is less than a 
threshold, which is a cumulative distribution function coding. 

Consider K different categories.  These categories could represent rock types, facies or any other 
categorical variable.  They are mutually exclusive – only one category can exist at a particular 
location.  They are exhaustive – one of the categories must exist at all locations.  The categorical 
variable is expressed as a series of K indicator variables: 

 ( )
1, if category prevails at location

; , 1,...,
0, otherwise                                        

k
i k k K⎧

= =⎨
⎩

u
u  (1) 

An indicator variable is often interpreted as the probability for a category to prevail at a particular 
location: the probability is 1 if it does prevail and 0 if it does not.  Hard local measurements are 
coded into 1s and 0s.  Imprecise or soft measurements may be coded into continuous probabilities 
between 0 and 1.  

The bivariate distribution for a particular h lag vector is fully defined by K2 transition 
probabilities. 

 ( ) { }; , ' Prob k, k' , , ' 1,...,p k k k k K= ∈ ∈ =h u u + h  (2) 

A schematic illustration of the 16 transition 
probabilities (for K=4) is shown to the right.  The K 
dark colored dots along the diagonal are when both 
locations are in the same category.  The remaining 
K(K-1) light colored dots represent cases where the 
category changes. 

There are a number of constraints on the bivariate 
transition probabilities.  The sum of all K2 transition 
probabilities must be 1.  These probabilities would be 
inferred as proportions, that is, we would scan through 
the available data and identify the number of pairs 
corresponding the lag distance: N(h), then we would 
calculate p(h,k,k’) as the proportion of k/k’ pairs. 
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If the domain is reasonably large and the lag distance is reasonably small, then the univariate 
probability of each category will match the naïve equal weighted proportion of the category.  This 
provides 2K additional constraints: 

 ( ) ( )
1 1

; , and ; , , 1,...,
K K

k k
j j

p j k p p k j p k K
= =

= = =∑ ∑h h  (3) 

A strong assumption of symmetry would entail that p(h;k,k’)= p(h;k’,k), which would provide a 
further K(K-1)/2 constraints.  The semivariogram will implicitly make this assumption, but 
geological phenomena often exhibit particular trends such as fining upward that contradicts this 
assumption.  The K indicator variograms are defined as: 

 ( ) [ ]{ }22 ; ( ; ) ( ; ) , 1,...,k E I k I k k Kγ = − + =h u u h  (4) 

There are only four scenarios in the indicator variogram calculation for a particular lag h and 
category k: 

1. Both u and u+h in the kth category:  (1-1)2 = 0 

2. Both u and u+h not in the kth category: (0-0)2 = 0 

3. u in the kth category and u+h not:  (1-0)2 = 1 

4. u+h in the kth category and u not:  (0-1)2 = 1 

Thus, we see that there is a contribution to the indicator variogram when there is a transition from 
one category to another.  Each indicator variogram summarizes 2(K-1) different bivariate 
transition probabilities.   

A schematic illustration of the transition probabilities summarized by the indicator variograms 
(for a K=4 example) is shown below.  The four illustrations are for the k=1,2,3,4 indicator 
variograms.  The bivariate points that are shaded are included in the indicator variograms. 

 
The shaded areas are represented by the following equation: 

 ( ) ( ) ( )
' 1 ' 1
' '

2 ; ; , ' ; ', , 1,...,
K K

k k
k k k k

k p k k p k k k Kγ
= =
≠ ≠

= + =∑ ∑h h h  (5) 

Direct indicator variograms cannot quantify asymmetry; they are the average transition 
probabilities from category k to any other category and from any other category to k.  Although 
indicator variograms do not quantify the direct transitions (the red dots on the diagonal), in 
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practice they are used to compute the direct transitions.  Assuming stationarity, the row and 
column sums for a particular category k would equal pk (see Equation 3), thus the row sum and 
the column sum plus two times the diagonal element would equal two times the univariate 
proportion of pk: 

 

( ) ( )
( ) ( )

( ) ( )

2 ; 2 ; , 2

; ; , , or 1,...,

; , ;

k

k

k

k p k k p

k p p k k k K

p k k p k

γ

γ

γ

+ =

= − =

= −

h h

h h

h h

 (6) 

Conventional indicator kriging only requires these direct terms.  A full indicator cokriging would 
require the full matrix of transition probabilities for all lag distances.  In practice, we would not 
consider the transition probabilities directly: we would center them under an assumption of 
stationarity and model them as covariances: 

 
( ) { }

( )
'

'

; , ' ( ; ) ( ; ') , , ' 1,...,

; , '
k k

k k

C k k E I k I k p p k k K

p k k p p

= + − =

= −

h u u h

h
 (7) 

Using the full matrix of K2 covariances in indicator kriging/simulation is straightforward.  The 
challenge is to fit them all to provide a licit model of coregionalization.  This is where we must 
consider some form of semiautomatic fitting.  In addition to imposing a licit model like the linear 
model of coregionalization, we would have to ensure than no transition probability ever goes 
negative, that is, 

 ( ) '; , ' , , ' 1,...,k kC k k p p k k K≥ =h  (8) 

The semiautomatic fitting will be discussed below. 

Spatial Correlation of Continuous Variables 

We consider continuous variables separately for simplicity.  Consider K different threshold 
values, zk, k=1,…,K.  These thresholds are in increasing order, that is, zk’>zk for all k’>k.  The 
indicator variable is defined as: 

 ( )
1, if ( )

; , 1,...,
0, otherwise   

kz z
i k k K

≤⎧
= =⎨
⎩

u
u  (9) 

The indicator transform at a particular threshold is often interpreted as the probability for the 
variable to be less than or equal to that particular threshold, which is like a CDF coding of the 
data rather than the PDF coding used for categorical variables. 

The bivariate distribution for a particular h lag vector is characterized by bivariate probabilities at 
the chosen thresholds: 

 ( ) { }' '; , Prob ( ) , ( ) , , ' 1,...,k k k kF z z z z z z k k K= ≤ ≤ =h u u + h  (10) 

A full description of the bivariate distribution would require an infinite number of thresholds, but 
the main features are captured with as few as the nine deciles. 
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The definition of the indicator variogram for the continuous variable case remains the same as the 
categorical variable case (see Equation 4).  Every pair of points Z(u) and Z(u+h) There are four 
possible outcomes; however, there is a contribution to the indicator variogram only when there is 
a transition, that is, both locations are not above or not below the cutoff.  See the yellow shaded 
areas in the left hand side of the sketch below.  As the threshold increases, the portion of the 
bivariate distribution that contributes to the indicator variogram changes (see the blue shaded area 
in the right hand side of the sketch). 

             
The indicator variogram is linked to the bivariate CDF: 

 ( ) ( ) ( ) ( )2 ; ; , 1 ; 1, 2 ; , , 1,...,k F k K F K k F k k k Kγ = + + + − =h h h h  (11) 

The first two terms on the right hand side are univariate CDF values and the last term is the 
bivariate CDF at the kth threshold.  The order relation property of probability distributions 
requires that all univariate and bivariate CDF values not decrease as the thresholds increase.  This 
must be accounted for in fitting indicator variogram fitting. 

As in the categorical variable case, conventional indicator kriging only requires these direct 
terms.  A full indicator cokriging would require the full matrix of indicator covariances for all lag 
distances.  The centered direct and cross indicator covariances would be calculated and fit under 
an assumption of stationarity and model them as covariances: 

 
( ) { }

( )
; , ' ( ; ) ( ; ') ( ) ( '), , ' 1,...,

; , ' ( ) ( ')

C k k E I k I k F k F k k k K

F k k F k F k

= + − =

= −

h u u h

h
 (12) 

Once again, the challenge is to fit the matrix of K2 covariances with a licit model of 
coregionalization.  This is where we must consider some form of semiautomatic fitting.  In 
addition to imposing a licit model of coregionalization, we must ensure than no univariate or 
bivariate cumulative probability ever decreases: 
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 ( ) ( )

( ) ( ') for all '
and

; , ' ( ) ( ') ; , ' ( ) ( ')
for all , ' ', , ', , ' 1,...,

F k F k k k

C k k F k F k C l l F l F l
k l k l k k l l K

≥ >

+ ≥ +

≥ ≥ =

h h
 (13) 

These constraints are somewhat more complex than in the categorical variable case, but it is still 
easy to code in the semiautomatic fitting of indicator variograms, see below. 

Semiautomatic Fitting of Indicator Covariances 

The varfit program described in CCG report five/six and in the Computers & Geosciences 
journal was adapted for fitting a K2 linear model of coregionalization of categorical or continuous 
indicator variables.  Two new programs were written based on the program varfit_lmc: (1) 
varfit_ind_cat for fitting categorical indicator LMC’s, and (2) varfit_ind_cont for 
fitting continuous indicator LMC’s.  The new versions of varfit require the output from 
gamv2004 as input; they will not work with the gamv program from GSLIB (Neufeld and 
Deutsch, 2004).  The ouput from the variogram fitting can be used directly as input to the 
indicator cokriging and simulation programs. 

Categorical Indicator Variogram Fitting.  Fitting a categorical indicator LMC was a simple 
extension of the existing LMC fitting program.  The number of categories, the categories codes, 
and the proportion of each category are required as input.  The input variogram types are limited 
to direct and cross categorical indicator variograms.  No other changes were made to the input 
parameters. 

The sills of the direct variograms are fixed based on the proportion of each facies type using the 
following formula: 

 ( )2sill 1k k k kp pσ= = −  (14) 

Neither the user nor the optimization is allowed to change the calculated sill value.  The cross 
variogram sills are set at initial values to ensure the LMC is valid.  The cross variogram sills are 
calculated as follows: 

 2 2
,sillk l k lσ σ= ⋅  (15) 

These sills can be changed by the optimization or fixed to a different value by the user. 

Continuous Indicator Variogram Fitting.  Continuous indicator LMC’s have an additional 
constraint compared with categorical indicator LMC’s; that is to make sure that no univariate or 
bivariate cumulative probability decreases, Equation (13).  This check is done after the 
optimization procedure is complete.  If an inconsistency is found, an error is reported to the 
screen.  The number of thresholds, the threshold values, and the cumulative probability of each 
threshold are required as input.  The input variogram types are limited to direct and cross 
continuous indicator variograms.   

The sills of the direct variograms are fixed based on the cumulative probability for each threshold 
using the following formula: 
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 ( ) ( )( )2sill 1k k k kF z F zσ= = −  (16) 

Neither the user nor the optimization is allowed to change the calculated sill value.  The cross 
variogram sills are set at initial values to ensure the LMC is valid.  The cross variogram sills are 
calculated using Equation (15).  These sills can be changed by the optimization or fixed to a 
different value by the user.   

Indicator Kriging 

Local indicator data are used to estimate the distribution of uncertainty at unsampled locations.  
Commonly, K estimates i*(u;k), k=1,…,K are calculated by kriging with indicator data for the 
same category (or threshold): 

 
( ) ( ) ( )

( ) ( ) ( ) ( )

*

1

*

1 1

; ; ;

; ; ; 1 ;

n
SK

SK k k

n n
SK SK

SK k

i k p k i k p

i k k i k k p

α α
α

α α α
α α

λ

λ λ

=

= =

− = −⎡ ⎤⎣ ⎦

⎡ ⎤= + −⎢ ⎥⎣ ⎦

∑

∑ ∑

u u u

u u u u
 (14) 

The K direct indicator covariances are required and will be reproduced by this classical simple 
kriging formalism.  These estimates continuously between 0 and 1; they depart from the global 
probabilities in presence of relevant local data.  Regardless of how the indicators are interpolated, 
they do not always satisfy the order relation requirements (1) they must be non-negative, (2) the 
categorical indicator estimates must sum to 1.0, and (3) the continuous indicator estimates must 
be non-decreasing.  Standard order relation correction procedures exist (Deutsch and Journel, 
1992).  Order relation deviations are less when the underlying spatial model is consistent. 

Sequential indicator simulation applies IK in a sequential fashion where a simulated value is 
drawn by Monte Carlo simulation at each location.  All locations are visited sequentially with an 
increasing level of conditioning.  A random order is followed to avoid artifacts.  The simulated 
realization reproduces the indicator variograms according to the same simple kriging principle 
used in continuous variables.  Order relation deviations lead to a lack of reproduction. 

The ik3d program and the sisim program from GSLIB (Deutsch and Journel, 1998) provide 
public domain implementations of IK and SIS.  No modifications are necessary. 

Indicator Cokriging 

Rather than just use indicators at the same category/threshold, we could use the full set of 
indicators in a cokriging estimator: 

 ( ) ( ) ( ) ( )*
,

1 1
; ; ; ;

n K
FCK

FCK l
l

i k p k i l p lα α
α

λ
= =

− = −⎡ ⎤⎣ ⎦∑∑u u u u  (15) 

This formalism requires the full set of K2 direct and cross covariances.  The benefit of cokriging 
in an indicator context is questionable.  The indicators at the same data location are highly 
correlated with each other; there is a very predictable succession of 0s and 1s.  This relationship 
between the indicators is sometimes used to avoid full indicator cokriging.  The most important 
reason to avoid full cokriging is the difficult fitting of a licit model of coregionalization.  
varfit_ind removes this concern. 
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The ik3d_fc and sisim_fc programs were derived from the GSLIB programs to implement 
full cokriging.  

An Example 

The Jura data set (Goovaerts, 1997) consists of 359 sample sites where several variables are 
measured. Land use and rock type are defined at each location, and concentrations of Cd, Cu, Pb, 
Co, Cr, Ni and Zn are also available. To illustrate the use of the new software discussed, the 
programs have been used to estimate the probability of prevalence of different land uses in this 
region of Switzerland using indicator cokriging.  Four possible land uses are defined (Figure 1): 
forest, pasture, meadow, and tillage. 

The indicator variograms and cross-variograms are calculated and modeled using the gamv2004 
and varfit_ind_cat programs. The parameters for variogram calculation are summarized in 
Table 1. The semi-automatic fitting requires an initial model that is positive definite. This is not 
automatically set up by the program, hence the total sills in the variograms and cross-variograms 
were set to provide a valid initial model. These sills were calculated based on the experimental 
proportions of the land uses (Table 2). The validity of the model was checked by verifying that 
the principal minors of the matrix of sills are positive (Table 3). The principal minors are the 
determinants of the k by k submatrices (k=1,…,n), whose diagonal elements lie on the principal 
diagonal of the covariance matrix.   

The program varfit_ind_cat provided a positive definite model (Figure 2 and Table 4), 
which was used for indicator cokriging. The probability of a given land use to prevail at each 
estimation location was calculated. The four probabilities should sum to one at every location, 
however small deviations occur, which have to be corrected to provide a consistent model. 

 

Figure 3 shows four location maps where the probability of a given land use prevailing at every 
location are depicted. These probabilities have been corrected to sum to one. Based on these 
probabilities, a classification can be performed, by assigning the most likely land use to every 
location, but honoring the global proportions. The classification is shown in Figure 4. 

The implementation of indicator cokriging is greatly facilitated by the new software, allowing the 
integration of all cross-correlations between the categories. 

Conclusions 

Constraints for the computation of indicator direct and cross-variograms have been proposed, 
which, along with the programs provided can greatly facilitate the modeling of the spatial 
relationships between categories, through the use of the linear model of coregionalization (LMC).  

Once the LMC model has been defined, implementation of indicator kriging and simulation are 
straightforward. The use of variograms and cross-variograms to determine the conditional 
cumulative distribution function through indicator cokriging allows an improved result as 
compared to the current practice of computing the conditional probabilities by kriging each 
indicator independently. This approach can be easily integrated in simulation, with the improved 
reproduction of relationships between categories. 
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Type Onmidirectional 

Number of lags 6 
Lag separation distance 0.1 km 

Lag tolerance 0.05 km 
Table 1: Parameters for variogram and cross-variograms calculation. 
 
 

 Forest Pasture Meadow Tillage 
Forest 0.1116 -0.0271 -0.0820 -0.0024 

Pasture -0.0271 0.1670 -0.1360 -0.0040 
Meadow -0.0820 -0.1360 0.2301 -0.0120 
Tillage -0.0024 -0.0040 -0.0120 0.0190 

Table 2: Sills of the direct (diagonal) and cross-variograms (off-diagonal) to ensure a valid initial 
model for varfit_ind_cat. 
 
 

Check Determinant 
Submatrix (1:1,1:1)  

0.1116  
0.1116 

Submatrix (1:2,1:2) 
0.1116 -0.0271 
-0.0271 0.1670  

0.0179 

Submatrix (1:3,1:3) 
0.1116 -0.0271 -0.0820 
-0.0271 0.1670 -0.1360 
-0.0820 -0.1360 0.2301  

0.0003 

Full Matrix (1:4,1:4) 
0.1116 -0.0271 -0.0820 -0.0024 
-0.0271 0.1670 -0.1360 -0.0040 
-0.0820 -0.1360 0.2301 -0.0120 
-0.0024 -0.0040 -0.0120 0.0190  

2.3x10-7 

Table 3: Positive definiteness check for the initial sills. 

 
  Structure1: Spherical Structure 2: Exponential 

Category Nugget Sill Range Sill Range 
Forest 0.0001 0.041 0.352 0.070 0.618 

Forest-Pasture 0.000 -0.009 0.352 -0.018 0.618 
Forest-Meadow 0.000 -0.039 0.352 -0.043 0.618 
Forest-Tillage 0.000 0.000 0.352 -0.002 0.618 

Pasture 0.001 0.086 0.352 0.080 0.618 
Pasture-Meadow 0.000 -0.070 0.352 -0.066 0.618 
Pasture-Tillage 0.000 0.000 0.352 -0.004 0.618 

Meadow 0.0001 0.119 0.352 0.111 0.618 
Meadow-Tillage 0.000 -0.008 0.352 0.001 0.618 

Tillage 0.002 0.011 0.352 0.006 0.618 
Table 4: Variogram and cross-variogram models. 
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Figure 1: Location map of samples indicating the land use. 

 

 

 
 

Figure 2: Fitting of indicator variograms and cross-variograms with two nested structures. 
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Figure 3: Location maps showing the probability of each land use to prevail at locations in the 
domain. 
 

 
Figure 4: Classification map showing the assigned land use to each location in the domain. 


