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Stochastic simulation of facies or geologic units is important before the assignment of continuous 
rock properties.  Sequential indicator simulation (SIS) remains a reasonable approach when 
there are no clear genetic shapes that could be put into object-based modeling.  Constraining SIS 
to soft secondary data coming from geological interpretation or geophysical measurements is 
important.  There are a number of techniques including IK with a local mean, collocated 
cokriging, Bayesian updating, permanence of ratios, block kriging and block cokriging.  
BlockSIS implements all of these and more (nine all together).  The images may also be 
cleaned using maximum a-posteriori selection. 

Introduction 

Geostatistical realizations are being used increasingly for uncertainty quantification.  There are 
many important decisions in geostatistical modeling.  Choosing the volume to estimate within is 
arguably the most important.  Decisions of stationarity are also important.  It is common to create 
models of a categorical variable that represents facies or rock type.  Stationarity is assumed 
within the different categorical variables.  Such categorical variable models are sometimes built 
deterministically relying on expert judgment; however, in many cases there is inadequate data to 
permit reliable modeling.  A stochastic modeling algorithm is used to construct multiple 
realizations.  Sequential indicator simulation (SIS) is a widely used technique for categorical 
variable models. 

There are legitimate criticisms against SIS.  The models can appear very patchy and unstructured; 
indicator variograms only control two-point statistical measures.  Object-based or process-based 
models provide more structural control.  SIS also often leads to uncontrolled and geologically 
unrealistic transitions between the simulated categories; the cross correlation between multiple 
categories is not explicitly controlled.  Truncated pluriGaussian models provide a more 
straightforward approach to handle multiple category interactions. 

Despite these criticisms, there are many good reasons to consider SIS.  The required statistical 
parameters are easy to infer from limited data.  The models are reasonable in settings where there 
are no large-scale curvilinear features.  The algorithm is robust and provides a straightforward 
way to transfer uncertainty in categories through to the resulting numerical models. 

A number of SIS variations have evolved over the years.  Most of the variations relate to the use 
of soft secondary data arising from geological interpretation or geophysical measurements.  This 
paper collects the most common variations together in clean GSLIB-like code. 
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Methodology 

Consider K different categories.  They are mutually exclusive – only one category can exist at a 
particular location.  They are exhaustive – one of the categories must exist at all locations.  The 
categorical variable is expressed as a series of K indicator variables: 
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An indicator variable is often interpreted as the probability for a category to prevail at a particular 
location: the probability is 1 if it does prevail and 0 if it does not.  Hard local measurements are 
coded into 1s and 0s.  Imprecise or soft measurements may be coded into continuous probabilities 
between 0 and 1.  Classical (geo)statistical inference is undertaken using indicator data including 
declustering for representative proportions and variography to understand the spatial continuity of 
each of the K indicator variables. 

The local hard and soft indicator data are used to estimate the distribution of uncertainty at an 
unsampled location.  Commonly, kriging is used for this estimation hence the name indicator 
kriging (IK).  The K estimates i*(u;k), k=1,…,K vary continuously between 0 and 1; they depart 
from the global proportions in presence of relevant local data.  Regardless of how the indicators 
are interpolated, they do not always satisfy the order relation requirement for a closed set of 
probabilities, that is, they should be non-negative and sum to 1.0.  Standard practice is to reset 
negative estimates to zero and then standardize the K estimates to sum to one by dividing through 
by the sum.  Order relation deviations always exist.  They are more severe when the K estimates 
are inconsistent with each other. 

Sequential indicator simulation applies IK in a sequential fashion where a precise category is 
drawn by Monte Carlo simulation at each location.  All locations are visited sequentially with an 
increasing level of conditioning.  A random order is followed to avoid artifacts.  The simulated 
realization reproduces the indicator variograms according to the same simple kriging principle 
used in continuous variables.  Order relation deviations lead to a lack of reproduction. 

The main purpose of modeling a categorical variable such as facies and rock type before 
continuous petrophysical properties is to permit a more reasonable decision of stationarity, that is, 
to provide subdivisions that are more geologically and statistically homogeneous.  Interestingly, 
however, it is common for the categories themselves to have trends and regions of higher and 
lower proportion.  Information on trends is available from geological mapping or geophysical 
measurement.  Geological trends are mapped as proportions or probabilities. 

Geophysical measurements could be treated as a secondary variable for cokriging, which does not 
require the seismic data to be explicitly calibrated to facies proportions; the original seismic units 
could be retained and the calibration enters through the cross covariances between the hard 
indicator data and soft seismic data.  Notwithstanding this flexibility of cokriging, calibrated 
probability values are preferred because (1) the calibrated probability values are in units we 
understand, and (2) cross variograms or covariances are often difficult to infer in presence of 
sparse well data.  This calibration is discussed in many sources including Deutsch, 2002. 

Based on direct mapping or calibration, the soft secondary data takes the form p(u;k), k=1,…,K 
where p is the proportion or probability of category k at location u.  The locally varying 
proportions may be at a larger scale; often, they represent vertical averages over a particular 



 402-3 

stratigraphic interval.  A number of different (co) kriging options have evolved to handle soft 
secondary data.  Following are the kriging options available in the BlockSIS program: 

Option Description 
0 Stationary simple kriging 
1 Ordinary kriging 
2 Nonstationary simple kriging using residuals from local mean 
3 Nonstationary simple kriging assigning one minus the sum of the 

weights to the local mean 
4 Collocated cokriging 
5 Bayesian updating 
6 Updating of probabilities with permanence of ratios 
7 Block kriging with probability representing the Z thickness 
8 Block cokriging with probability representing the Z thickness 

Each of these kriging options will be described below.  Goovaerts’s book is a good place to find a 
more thorough description of the various kriging equations.  The focus here is on the differences 
between the options and the implementation in BlockSIS.  Option 0 is stationary simple 
kriging, which is required by theory for CDF and variogram reproduction.  In presence of n 
nearby data the estimator is written: 
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The second equation is a reorganization of the first.  The simple kriging weights are solved by the 
well known kriging equations; the notation for the kriging weights is somewhat confusing, but it 
is required to be clear that the weights are for each data (α subscript), by simple kriging (the SK 
superscript), and they relate to the location being estimated and the particular category (the (u;k) 
parenthetical parameters.  The pk values are the global declustered mean probability for each 
category.  The K estimates are performed independently and order relation deviations are 
corrected.  Note that the kriging variance is not used; we only need the weights.  We also note 
that if the kriging weights were to sum to one, the global mean would not be used in the equation. 

Option 1 is ordinary kriging.  The kriging weights are constrained to sum to one.  The estimator 
simplifies to: 
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Ordinary kriging is not recommended in sequential Gaussian simulation because of variance 
inflation; however, ordinary indicator kriging does not have the same problem because the 
kriging variance is not used.  Ordinary kriging in sequential simulation does not always work as 
expected.  Previously simulated grid nodes are used in the kriging, which spreads the influence of 
the original data to a much larger region than expected. 
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The remaining seven options in BlockSIS are various ways to use secondary data.  Option 2 
uses nonstationary simple kriging with residuals from the locally varying mean probabilities: 
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The simple kriging weights are the same.  We cannot reorganize this equation as we did in 
Equation 2 because the locally varying mean is different at the location being estimated and the 
data locations. 

Option 3 is a slight modification to the generalized nonstationary simple kriging.  One minus the 
sum of the weights is assigned to the local mean: 
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The differences between Options 2 and 3 are minor when the locally varying mean values are 
smooth, but the differences can be more significant when there is greater variability in the local 
probability values, for example, when they come from seismic data. 

Option 4 is a collocated cokriging.  A simplified cokriging system is solved to get the n+1 
weights that apply to the n hard indicator data and the collocated probability: 
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A correlation coefficient is required to build and solve the simplified cokriging system of 
equations.  A different correlation coefficient could be used for each category; however, care 
should be taken to ensure consistency.  The correlation coefficient could not be high for one 
category and low for another category.  They can be increasingly different as there are more 
categories.  Unbiasedness requires that one minus the sum of all weights be applied to the global 
mean. 

Option 5 is Bayesian updating.  There are interesting theoretical links between Bayesian Updating 
and collocated cokriging.  The implementation, however, is quite different and it is worthwhile to 
have this option implemented differently from the previous option.  The simple kriging estimate 
is calculated (Equation 2) and postprocesses as follows: 

 ( ) ( )* * ( ); ; k
BU SK

k
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Where pk(u) is the locally varying probability and pk is the global probability for the kth category.  
There is no need for a correlation coefficient; the information content in the secondary data is 
contained in the difference of pk(u) from pk.  There is an implicit assumption of conditional 
independence in this Bayesian updating formalism. 

An alternative updating procedure dubbed permanence of ratios was proposed by André Journel.  
The permanence of ratios method is equivalent to the naïve Bayes model in machine learning.  
Many people consider this method to provide an improved scheme for merging two estimates of 
conditional probability (the SK estimate and the secondary data estimate in our context).  Option 
6 uses this procedure.  The equation for the estimate is as follows: 
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Where pk(u) is the locally varying probability and pk is the global probability for the kth category.  
There is a different implicit assumption of dependence in this formalism. 

Option 7 implements block kriging for the local probability.  An assumption is made that the 
secondary data represents the value over the entire vertical extent of the model, which is 
appropriate in many stratigraphic settings.  The estimator: 
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The average covariances between every data and the assumed block data pk(u) is calculated by 
numerical integration.  There is an assumption that the block data is a true average of the smaller 
scale values. 

Option 8 implements block cokriging for the local probability.  This is similar to Option 7, but 
block cokriging is performed instead of block kriging.  A Markov-type model is assumed 
whereby the cross variogram at a point-scale is derived from the indicator variogram and the 
correlation coefficient.  A similar numerical integration approach is used to calculate the require 
block cross covariances.  The estimator: 
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The correlation coefficient can depend on the category, but in general they should be similar. 

Choosing the right option 

The nine different options available in the BlockSIS program can be confusing.  There are a 
number of general remarks about when the different options should be chosen: 

• Simple kriging (Option 0) is the best approach when there is no secondary data and there 
is no evidence of significant nonstationarity.  Simple kriging is required by theory for 
statistical parameter reproduction. 

• Ordinary kriging (Option 1) is a good approach when there are many local data and there 
is some evidence of nonstationarity areas. 

• The locally varying mean approach (Options 2 and 3) is suitable for local mean values 
coming from geological interpretation.  They could be used for geophysical-derived 
values.  The first local mean option (2) is the most correct by theory; however, the 
simplified option 3 places slightly more emphasis on the local hard data instead of the 
local mean values. 

• Collocated cokriging (Option 4) is suitable when the scale of the secondary data is similar 
to that being modeled and there is a clear statistical correlation between the hard data and 
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the secondary data.  Collocated cokriging gives explicit control over the weight placed on 
the secondary data. 

• The updating approaches (Options 5 and 6) are suitable when there are few hard data and 
it is not straightforward to establish a correlation coefficient.  The correlation is somehow 
embedded in the local probability values, but it is not explicitly specified.  The Bayesian 
Updating approach will give more weight to the secondary data.  The permanence of ratio 
approach will, in general, give less weight to the secondary data because its redundancy 
with the hard data is captured better. 

• The block (co)kriging approaches (Options 7 and 8) are appropriate for cases where the 
secondary data represents a vertical average over the vertical extent of the model.  Block 
kriging is correct when the secondary probability values are reliable.  The cokriging 
approach can be used to downweight the secondary data. 

In the end, there is no recipe for correct application.  The results should be carefully checked to 
ensure that there are no biases in the local or global proportions and that the patterns of spatial 
variation appear reasonable. 

Image cleaning 

One concern with sequential indicator simulation is that the realizations often show short-scale 
variations, which appear geologically unrealistic.  In some cases, such variations affect 
subsequent processing and predicted reserves; a justifiable reason to consider realization cleaning 
algorithms.  A second concern is that the category proportions often depart from their target input 
proportions.  In particular, facies types with relatively small proportions (5 to 10%) may be 
poorly matched.  In indicator simulation, the main source of this discrepancy is the order relations 
correction (the estimated probabilities are corrected to be non-negative and sum to 1.0).  There is 
no evident alternative to the commonly used order relations correction algorithms; post-
processing the realizations to honor target proportions is a convenient and attractive solution. 

For convenience, the maximum a-posteriori selection or MAPS technique has been implemented 
within the BlockSIS program.  The basic MAPS algorithm amounts to replacing the categorical 
code type at each location by the most probable category based on a local neighborhood.  The 
probability of each category, in the local neighborhood, is based on (1) closeness to the location 
being considered, (2) whether or not the value is a conditioning datum, and (3) mismatch from the 
target proportion. 

Four variations are implemented in BlockSIS: no cleaning, light cleaning, heavy cleaning, or 
super-duty cleaning.  The basic structure and weighting of the cleaning is based on the covariance 
table that is constructed for the kriging.  Larger cleaning windows are considered when the level 
of cleaning is increased.  The user should choose the level of cleaning carefully; unnecessary 
cleaning can impose too much continuity and unreliable distributions of uncertainty. 

Program 

The BlockSIS program follows standard GSLIB conventions.  Most of the functions are 
available in GSLIB.  Two source code files are required: BlockSIS.for and 
BlockSISsubs.for; the subroutines have been collected to facilitate compilation if the 
compiled GSLIB library is not available.  There are no hard-coded limits in the BlockSIS 
program; dynamic memory allocation is used throughout.  The parameters for the program: 
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Line   START OF PARAMETERS: 
 1     8                              -0=SK,1=OK,2=L1,3=L2,4=CC,5=BU,6=PR,7=BK,8=BC 
 2     1                              -Clean: 0=none, 1=light, 2=heavy, 3=super 
 3     2                              -number of categories 
 4     0     1                        -   categories 
 5     0.70  0.30                     -   global proportions 
 6     0.50  0.50                     -   correlation coefficients for soft data 
 7     well.dat                       -file with local data 
 8     1   2   3   4                  -   columns for X,Y,Z, and category 
 9     lvm.dat                        -file with gridded prior mean values 
10     1   2                          -   columns for each category 
11     3                              -   2-D areal map (2) or 3-D cube (3) 
12     keyout.dat                     -file with keyout array 
13     1                              -   column for keyout indicator 
14     1                              -debugging level: 0,1,2,3,4 
15     BlockSIS.dbg                   -file for debugging output 
16     BlockSIS.out                   -file for simulation output 
17     1                              -number of realizations 
18     100 0.00 150.0                 -nx,xmn,xsiz 
19     150 0.00 150.0                 -ny,ymn,ysiz 
20      50 0.00   1.0                 -nz,zmn,zsiz 
21     69069                          -random number seed 
22     12                             -maximum original data  for each kriging 
23     12                             -maximum previous nodes for each kriging 
24     1                              -assign data to nodes? (0=no,1=yes) 
25     0                              -maximum per octant    (0=not used) 
26     5000. 5000.  10.               -maximum search radii 
27       30.    0.   0.               -angles for search ellipsoid 
28      101   101  101                -size of covariance lookup table 
29     1 0.0                          -Cat 1: nst, nugget effect 
30     1 1.0  30. 0.0 0.0             -       it,cc,ang1,ang2,ang3 
31       5000.  5000.  10.            -       a_hmax, a_hmin, a_vert 
32     1 0.0                          -Cat 2: nst, nugget effect 
33     1 1.0  30. 0.0 0.0             -       it,cc,ang1,ang2,ang3 
34       5000.  5000.  10.            -       a_hmax, a_hmin, a_vert  

The kriging option is specified on Line 1.  The cleaning option is specified on Line 2.  The 
number of categories and the category codes are specified on lines 3 and 4.  The global 
proportions (expressed as a fraction) are specified on Line 5.  They are required regardless of the 
kriging option chosen.  The correlation coefficients between the hard indicators and soft 
probabilities for each category are specified on Line 6.  They are required regardless of the 
kriging option chosen. 

The local data are specified on Lines 7 and 8.  Standard GSLIB conventions are used for the data 
file and the column specifications.  Unconditional realizations are created if the file does not 
exist.  The locally varying probabilities are specified on Lines 9, 10 and 11.  A probability is 
required for each category even though they must all sum to 1 and there are only K-1 degrees of 
freedom.  Line 11 specifies whether the locally varying probabilities represent an areal 2-D map 
or a full 3-D grid.  The 2-D values will be replicated to the 3-D grid if required.  A mask or 
keyout array the size of the grid may be considered; Lines 12 and 13 specify the keyout file.  
Locations where the keyout value is 0 will not be simulated; locations where the value is 1 will be 
simulated.  The entire grid will be simulated if there is no keyout file.   

The debugging level and a file for the debugging output are specified in Lines 14 and 15.  The 
output file is specified on Line 16.  Standard GSLIB conventions are followed.  The number of 
realizations is specified in Line 17.  The grid in standard GSLIB conventions is specified on 
Lines 18, 19 and 20.  The random number seed is in Line 21. 
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Lines 22 through 28 specify search parameters.  Line 24 specifies whether or not the data are 
assigned to the grid node locations.  It is more CPU efficient to assign the data, but that may not 
be acceptable given the spacing of the data and the grid size.  The number of original data in Line 
22 is only used when the data are not assigned to grid nodes.  The number of previously 
simulated grid nodes, specified on Line 23, is used for original data assigned to grid nodes and to 
previously simulated grid nodes.  A maximum number per octant is specified on Line 25; it is 
used if it is greater than 0.  The search radii and orientation is specified on Lines 26 and 27.  The 
size of the covariance lookup table is on Line 28.  The lookup table should be set large enough to 
avoid calculating the covariances every time; this is particularly true if block kriging.  The 
vertical size of the covariance lookup table should be set to 2nz+1. 

Lines 29 and greater specify 3-D variogram models in standard GSLIB conventions for each 
category.  A variogram model is required for each category – even if there are only two. 

An Example 

We will use a small 2-category example for illustration.  The first category (facies) “0” is non-net 
reservoir and the second facies “1” is net sand.  Figure 1 shows the location of six wells and 
locally varying mean values coming from mapping.  We see that the proportion of facies 0 is 
0.635 and the proportion of facies 1 is 0.365.  The proportions from the well data are 0.705 and 
0.295.  We should, of course, use the proportions from the locally varying mean which are 
declustered to represent the area of interest.  There is no vertical resolution in the locally varying 
mean values; they represent the entire vertical thickness of the stratigraphic layer.  8% of the grid 
is keyed out – notice the edges. 

The vertical indicator variogram from the well data is shown at the bottom of Figure 1.  The blue 
curve is a single spherical structure with a range of 17m, which is the simplest reasonable 
variogram model to consider.  A two-structure variogram model with a dampened hole effect is 
shown as the red curve.  The range on these variograms is likely too large; it is being affected by 
the non-net wells.  The range could be decreased.  That detailed analysis is outside the scope of 
this note on the BlockSIS paper. 

The grid is 111 by 140 by 35 grid nodes (543900 total).  The indicator variograms will be fixed 
with a very small nugget effect, a single spherical structure, a vertical range of about 3 grid 
blocks and a horizontal range of about 30 grid blocks. 

Figure 2 shows three slices through an SIS realization with Option 0 – SK and no cleaning.  The 
global proportions and variograms are reasonably reproduced.  The local well data are exactly 
reproduced.  The local probabilities are not used in the modeling and are not reproduced.  Figure 
3 shows one of the slices through SK-based realizations with different levels of kriging.  The 
facies are indeed smoother and less erratic as the cleaning level increases.  Following results will 
be shown with the light cleaning option. 

Figure 4 shows three slices through an SIS realization with Option 1 – OK and light cleaning.  
The trends away from the well data appear better reproduced than the SK realization of Figure 1.  
The mean is estimated locally.  Figures 5 and 6 show the slices through realizations of the two 
different LVM options.  The two LVM realizations look very similar.  The central high trend is 
well reproduced.  The results do not look significantly different than the OK-based model.  Figure 
7 shows slices through the collocated cokriging option.  A correlation coefficient of 0.51 was 
calculated (see cross plot) and used.  The results look very similar to the LVM – the trend is well 
reproduced. 
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Figures 8 and 9 show the results for Bayesian updating and the permanence of ratios.  The models 
are almost exactly the same.  There are some pixels different on the horizontal slice, but no 
changes are visible on the cross section.  These two models seem to be attributing too much 
influence to the secondary variable.  The trend is overused. 

Figures 10 and 11 show the results for block kriging and block cokriging.  They are very similar 
in this case because the correlation coefficient in the block kriging is very high.  The areal 
proportions appear to be well reproduced by both methods. 

Figure 12 shows the reproduction of the areal proportion in category 1 over all slices (averaged 
over 10 realizations for numerical stability).  The reference proportion is shown at the top.  The 
influence of the wells can be seen in all cases.  In the simple kriging model (upper left), we only 
see the influence of the wells since the trend model is not used; the reproduction of the trend 
model is quite poor.  The ordinary kriging model (upper center) also only uses the wells, but the 
local estimation of the mean leads to fairly good results.  We note that ordinary kriging works 
quite well with indicators because the kriging variance is not used (as it is in Gaussian 
simulation).  The LVM, cokriging and block kriging models all look quite good.  The Bayesian 
updating and the permanence of ratios have too many category 1 blocks in the central area. 

There is a large amount of sensitivity in the selection of the best option.  The results of block 
kriging look good in this case.  The secondary data is not always so smooth; another algorithm 
could work better in the case of a secondary variable arising from geophysical measurements.  An 
advantage of the BlockSIS program is that many different algorithms can be easily tried. 

Conclusions 

Sequential indicator simulation is a useful categorical variable simulation tool.  There are a 
number of important implementation choices, particularly in presence of soft secondary data.  
The BlockSIS program implements most of the available techniques including block 
(co)kriging.  This program also integrates a common image cleaning algorithm using the 
covariance lookup table and conditioning data that are readily accessible inside the simulation 
algorithm. 
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Figure 1: Maps and histograms of the local probability values for facies types 0 (left) and 1 
(right).  The red dots are the well locations.  Histograms of the prior mean values and the 
indicator variogram are also shown. 
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Figure 2: Slices through SIS (SK) realization with no cleaning.  The horizontal slice (at the top) 
is through the center of the model.  The two XZ cross sections are at index 76 (near the center) 
and 30 (toward the South). 
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Figure 3: Slice through SIS (SK) realization with different cleaning options: no cleaning (top), 
light, heavy, and super cleaning (from top to bottom).  All realizations reproduce the well data. 
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Figure 4: Slices through SIS (OK) realization with light cleaning.  The horizontal slice (at the 
top) is through the center of the model.  The two XZ cross sections are at index 76 (near the 
center) and 30 (toward the South). 
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Figure 5: Slices through SIS (LVM - 1) realization with light cleaning.  The horizontal slice (at 
the top) is through the center of the model.  The two XZ cross sections are at index 76 (near the 
center) and 30 (toward the South). 
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Figure 6: Slices through SIS (LVM - 2) realization with light cleaning.  The horizontal slice (at 
the top) is through the center of the model.  The two XZ cross sections are at index 76 (near the 
center) and 30 (toward the South). 
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Figure 7: Slices through SIS (Collocated Cokriging) realization with light cleaning.  The 
horizontal slice (at the top) is through the center of the model.  The two XZ cross sections are at 
index 76 (near the center) and 30 (toward the South). 
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Figure 8: Slices through SIS (Bayesian Updating) realization with light cleaning.  The horizontal 
slice (at the top) is through the center of the model.  The two XZ cross sections are at index 76 
(near the center) and 30 (toward the South). 
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Figure 9: Slices through SIS (Permanence of Ratios) realization with light cleaning.  The 
horizontal slice (at the top) is through the center of the model.  The two XZ cross sections are at 
index 76 (near the center) and 30 (toward the South). 
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Figure 10: Slices through SIS (Block Kriging) realization with light cleaning.  The horizontal 
slice (at the top) is through the center of the model.  The two XZ cross sections are at index 76 
(near the center) and 30 (toward the South). 
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Figure 11: Slices through SIS (Block Cokriging) realization with light cleaning.  The horizontal 
slice (at the top) is through the center of the model.  The two XZ cross sections are at index 76 
(near the center) and 30 (toward the South). 
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Figure 12: Areal proportions of facies 1.  The reference is at the top center.  All options averaged 
over 10 realizations are shown below. 


