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This short note presents some preliminary results about a study regarding the effect of the choice 
of the model for combining information from multiple sources.  A data set is split in two subsets 
and four subsets.  The probability of not exceeding thresholds corresponding to the first quartile, 
the median and the third quartile, are calculated at validation points with each subset.  Then, the 
two subsets are combined in different ways to evaluate the required probabilities.  This is 
repeated in the second case, where four subsets are used. 

Introduction 

In many areas, particularly in petroleum geostatistics, several sources of information are 
available.  Typically well logs, geologic trends and seismic data are considered for building 
geostatistical models.  These sources are used to inform about a particular variable at every 
location of the simulation field.  These sources are somehow dependent of each other since they 
are related to the same variable of interest; however, the dependency may not be known. 

Several methodologies in geostatistics consider the integration of these sources of information. 
Many are based on some assumption of independence.  The goal of this paper is to describe the 
typical methodologies considered to integrate information in a simulation context and to discuss 
when the modeler should be concerned with the dependency between multiple variables. 

Models of dependency 

Several models of dependency exist that allow integration of multiple sources of information.  
The exact expression when integrating N variables for a conditional probability is: 
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where A is the variable of interest and B1,…, BN are N secondary variables informing the primary 
variable A.  Bayes law gives the exact expression for the conditional probability: 

),...,(
),...,,|(...),,|(),|()|()(

),...,|(
1

11213121
1

N

NN
N BBP

BBABPBBABPBABPABPAP
BBAP −⋅⋅⋅⋅⋅

=

This exact expression requires knowing the joint probabilities.  These joint distributions are often 
unknown and some simplification is required.  The easiest assumption is to consider that all 
sources are independent.  This leads to the following solution: 
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This solution is often unrealistic and inconsistent results can be obtained, that is, they may easily 
fall outside the [0,1] interval. 

A second approximation is the assumption of conditionally independence with respect to the 
variable of interest, that is: 

)|(),...,,|(

)|(),,|(
)|(),|(

11

3213

212

ABPBBABP

ABPBBABP
ABPBABP

NNN =

=
=

−

 

This allows rewriting the expression for the conditional distribution as: 
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Since the joint distribution for the secondary variables is also unknown, this approach can be 
further simplified by assuming that the conditional probabilities of the complements can be 
written similarly: 
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Taking the ratio between these two expressions gives the permanence of ratios model of 
dependency (Journel, 2002; Krishnan, 2004), which entails conditional independence: 
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A step forward is to assume a model of redundancy such as the τ model (Journel, 2002). This 
model adds a parameter to compute the conditional probabilities in order to add some 
redundancy. 
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The parameters must be estimated or can be determined by cross-validation or jack-knife. 

Other methods could be considered for integration of the information, although they are not 
considered in this note: Bayesian updating under a multivariate Gaussian assumption or with a 
non-parametric approach. This approach could be combined with transformations such as ACE 
for making the relationships linear, and a dimension reduction technique such as PCA to 
determine independent factors.  
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As more and more variables are available, the degree of redundancy they have with respect to the 
variable of interest becomes more difficult to characterize.  At some point, a data-based 
calibration is required to avoid the bias in the estimation of conditional distributions if an 
assumption of independence (or conditional independence) is used. 

Case study 

A data set containing 923 data in two dimensions is used to illustrate the effect of the integration 
approach. From the data, 190 are taken as validation locations, that is, these are the locations 
where the probability of exceeding a given threshold will be estimated. 

The remaining data are first divided into two subsets (Figure 1). These subsets have been taken 
randomly, therefore, only small fluctuations can be seen in their statistics (Figure 2). 

  
All Data Validation data 

  
Subset 1 Subset 2 

Figure 1: Location maps of the available data (top left), validation set (top right), and two subsets 
(bottom). 
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Figure 2: Histograms and basic statistics of the data available, validation set, and two subsets. 

The probability of not exceeding the first, second (median) and third quartiles of the data 
distribution are calculated. From these estimated probabilities, two performance measures are 
calculated:  

1. The mean squared error calculated as the sum for the three estimated probabilities of the 
differences between the estimated probability computed and the true probability, which is 
known since the actual values are known. The latter can be either 0 or 1. 

2. The maximum difference for the three points computed of the cumulative distribution 
function, with respect to the true value at each threshold. 

The estimated probabilities from the two subsets are then combined using different methods, 
namely: 

1. Full independence assumption 

2. Conditional independence assumption 

3. Permanence of ratios assumption with parameter t=0.1 

4. Permanence of ratios assumption with parameter t=0.5 

5. Permanence of ratios assumption with parameter t=2.0 

Results are compared with the case when all the data are used to estimate the probabilities of not 
exceeding the three thresholds, with indicator kriging. 
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MSE Average Min Max 
All data 0.1472 0.0025 0.8271 
Subset 1 0.1526 0.0089 0.6444 
Subset 2 0.1558 0.0021 0.8140 
FI 0.2255 0.0010 1.8539 
CI 0.1718 0.0003 0.7431 
PR 0.1 0.1513 0.0094 0.6483 
PR 0.5 0.1582 0.0021 0.6999 
PR 2.0 0.1927 0.0000 0.7563 

Table 1: Performance comparison of the integration methods for the case of two subsets, using 
mean squared errors. 

From Table 1, it can be seen that, on average the MSE is reduced as all the data are used in a 
consistent manner. In this case, the first row of the table shows the results of performing indicator 
kriging using all the data that are not in the validation set. Since the estimated probabilities are 
calculated from a kriging system that accounts for the dependence and redundancy of the data, the 
MSE value is smaller as when the probabilities are estimated from each subset independently 
(second and third rows).  

The use of a model of full independence clearly goes against the nature of these data. The 
consequence is that probabilities are easily estimated outside the allowed range of [0,1]. The MSE 
is therefore very high. This model should be immediately discarded as some correlation is always 
present when different variables are used to estimate the same attribute. If they are related to the 
attribute of interest, some relation between them must exist. 

The conditional independence assumption provides in this case results that are worse than 
considering each subset separately.  This means that disregarding the correlation between the 
information (or its redundancy) may play against the goal of integrating additional information.  

The permanence of ratio models with different degrees of dependence show that the correlation 
can be calibrated and, if properly accounted for, results are improved. In this application, a t 
parameter of 0.1 provide better results than considering only one subset at a time, without 
integrating the information of the second subset. Jack-knife appears as a good approach to 
calibrate this parameter to account for dependency between variables, when their joint 
distribution is not known. 

Table 2 shows the summary of the performance when measured with the maximum difference 
between the estimated probability value at a given threshold and the true probability (indicator 
value) at that same threshold. 
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D max Average Min Max 
All data 0.5332 0.0862 1.0000 
Subset 1 0.5505 0.1599 0.9771 
Subset 2 0.5465 0.0521 0.9700 
FI 0.6094 0.0442 2.0367 
CI 0.5986 0.0216 0.9988 
PR 0.1 0.5580 0.1369 0.9781 
PR 0.5 0.5819 0.0580 0.9915 
PR 2.0 0.6139 0.0031 1.0000 

Table 2: Performance comparison of the integration methods for the case of two subsets, using 
the maximum difference in probability between the estimated and true probability for the three 
indicators used. 

From this analysis, it can be seen that, although the use of the permanence of ratios model with a 
parameter t=0.1 performs best than all other methods, however, it did not outperformed the result 
from using a single subset to perform the estimation of the probabilities.  

The application is repeated considering now four subsets (Figure 3). Once again, these four 
subsets represent adequately the full data set, as seen in their histograms (Figure 4). 

The same models for integrating the redundancy are used. The permanence of ratios is applied 
with a constant t parameter to integrate successively the four sources of information, that is, t is 
applied three times to account for the redundancy. 

Results are summarized in Table 3 for the MSE and Table 4 for the maximum difference in 
probability. 

MSE Average Min Max 
All data 0.1472 0.0025 0.8271 
Subset 1 0.1593 0.0207 0.6437 
Subset 2 0.1654 0.0140 0.6073 
Subset 3 0.1664 0.0021 0.7492 
Subset 4 0.1651 0.0099 0.7358 
FI 0.6569 0.0005 7.5154 
CI 0.1961 0.0000 0.7816 
PR 0.1 0.1574 0.0095 0.6296 
PR 0.5 0.1837 0.0002 0.6660 
PR 2.0 0.2170 0.0000 0.6724 

Table 3: Performance comparison of the integration methods for the case of four subsets, using 
mean squared errors.
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D max Average Min Max 
All data 0.5332 0.0862 1.0000 
Subset 1 0.5612 0.1850 0.9280 
Subset 2 0.5715 0.1867 0.9604 
Subset 3 0.5680 0.0663 0.9703 
Subset 4 0.5612 0.1344 0.9425 
FI 0.9484 0.0372 4.2231 
CI 0.6287 0.0013 1.0000 
PR 0.1 0.5807 0.1535 0.9617 
PR 0.5 0.6250 0.0197 0.9991 
PR 2.0 0.6385 0.0000 1.0000 

Table 4: Performance comparison of the integration methods for the case of four subsets, using 
the maximum difference in probability between the estimated and true probability for the three 
indicators used. 

Results are similar in this case than for the case of two subsets.  

Discussion 

The problem of integrating information from multiple sources is complicated, particularly when 
these sources are very different. Many techniques are available for integrating information. The 
main difficulty of this process is to understand the relationship between variables, particularly 
their redundancy and correlation. 

Not accounting for the redundancy will lead to believing that, as more sources of information are 
available, more is known about the variable of interest.  This simple study showed that full 
independence is a poor assumption.  This was expected, since all subsets correspond to the same 
variable, hence the redundancy of information is very high.  This is supported by the fact that a 
low t value in the permanence of ratio model, generated the better results.  This can be interpreted 
in words as “give little weight to subsets 2, 3, and 4, as most of the information was given by 
subset 1”. 

In this case study, uncertainty due to the inference of modeling parameters has not been 
accounted for.  The same parameters (variogram model, threshold and probabilities) have been 
used in all cases, hence the importance of the amount of data for estimating key parameters of 
first order of importance for the modeling process, has not been included. 

Other techniques of integration of information should be investigated in further studies, as well as 
the use of sources of information of different nature.  We are exploring different methods to 
aggregate information data sources and when it is necessary to seek complex and problem-
specific models of redundancy. 
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Subset 1 Subset 2 

  
Subset 3 Subset 4 

Figure 3: Location maps of the four subsets used in the second analysis. 
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Figure 4: Histograms and basic statistics of the four subsets. 


