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Sequential simulation techniques such as sequential Gaussian simulation and sequential 
indicator simulation, work with an input variogram model to create realizations that reproduce 
local data, an input histogram and a variogram model.  A limited search is often used to manage 
computer resources.  This causes the variogram to be poorly reproduced.  Reasons for such 
unsatisfactory reproduction are considered in this paper.  A link between the perfect screening 
property of the exponential variogram and inadequate reproduction of input variograms is 
established.  A method for finding the exponential variogram reproduced in such simulation is 
provided.  Several small examples illustrating the methodology are considered. 

Introduction 

Stochastic simulation is widely used to quantify uncertainty in regionalized variables.  Multiple 
equiprobable realizations of the spatial distribution of either continuous or categorical attributes 
are used for resource and reserve assessment (Leuangthong, Ortiz and Deutsch, 2004-2005).  

The variogram is an extremely important input to geostatistical simulation. It is a measure of 
spatial correlation, geometry and continuity of the variable of interest. Appearance, behavior and 
predictions from the created geostatistical models as well as spatial continuity of the variables we 
model depend heavily on modeling and reproduction of the variogram (Deutsch, 2002). 

In this paper we investigate the commonly observed problem of spherical variogram reproduction 
by sequential simulation with limited search. We explain the exponential shape of the variograms 
reproduced by sequential simulation with limited search by the perfect screening property of the 
exponential variogram. We also propose an efficient method for finding the exponential 
variogram that will be reproduced by sequential simulation with limited search strategy with an 
input spherical variogram prior even to conducting any simulation. We illustrate our methodology 
with several small examples. 

Perfect Screening of the Exponential Variogran 

Let us consider the problem of estimation of an unknown value of the variable of interest at 
location u* using the data at locations 1u  and 2u  based on Simple Kriging, when all three 
locations lie on one line. The data configuration is shown below. 
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Assume that the variogram of the data is simple (single structure) isotropic exponential, 
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where a denotes the range of correlation.  Then, the estimate at the location u* is given by 
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where 21 , YY  denote data values of the variable of interest at the locations 1u  and ,2u  m is the 
known stationary mean and 21 ,λλ  are weights given to data at locations 1u  and 2u calculated 
from the well known system of normal equations, 
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In the case of exponential variogram, for the data configuration shown above the elements in the 
right-hand side covariance vector and the left-hand side covariance matrix of equation (1) are 
given by 
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Then, it is obvious that the weight corresponding to the second data 2Y  is equal to 0, since 
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So, the estimate at the location u* does not depend on the data value at the location ,2u  and is 
determined entirely by the data at the location 1u  and the stationary mean, that is, 
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We will refer to this property of the exponential variogram as perfect screening.  The perfect 
screening property is a property that holds only for exponential variogram; it does not hold for 
any other variogram type.  Moreover, perfect screening cannot be observed when using ordinary 
kriging for estimation of the value of the variable of interest. This follows directly from the 
system for the ordinary kriging weights. 
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Variogram Reproduction in Sequential Simulation with Limited Search Strategy 

The input variogram is not always reproduced in sequential simulation such as sequential 
Gaussian simulation (SGS).  The lack of reproduction is worse when a limited search is used.  
Figure 1 shows an example.  Specifically, Figure 1 shows the reproduction of the input spherical 
variogram: 
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based on an unconditional SGS with number of simulated data used for subsequent sequential 
generation of the unknown values equal to 8.  Clearly, the variograms of the simulated values do 
not have the shape of the input spherical variogram.   The variograms have a shape similar to the 
exponential variogram.  This may seem quite surprising at first.  There is, however, a very simple 
explanation for this phenomenon.  Using the limited search strategy is equivalent to using a large 
number of data, but setting the weight corresponding to most of them (to data beyond a certain 
search radii) equal to zero.  This is equivalent to using an exponential variogram, which has a 
property of perfect screening. 

To verify this observation and conclusion, a method for finding an exponential variogram 
reproduced by sequential simulation with limited search strategy is proposed in the next section. 
Further, we restrict our attention to considering only input spherical variograms. 

Method for Finding Exponential Variogram reproduced by Sequential Simulation with 
Limited Search Strategy 

It can be noted from Figure 1 that the reproduction of the input spherical variogram to the 
stochastic sequential simulation at small lag distances is good.  Thus, the exponential variogram 
that is truly reproduced by sequential simulation should confirm the same behavior.  
Mathematically, this means that the gradients of the input spherical variogram and reproduced 
exponential variogram are equal for some small distance, that is 
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where )(hSphγ  denotes the input spherical variogram consisting of k structures each with 

contribution ic  and range of correlation ,ia  that is, 
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)(hExpγ  denotes the reproduced exponential variogram with an unknown range of correlation b,  
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and ,20 sh =  with s equal to the size of the block partitioning used in sequential simulation (this 
relation was determined experimentally). 

Note that using definitions (3), (4) directly, we can rewrite equality (2) as 
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The range of correlation of the reproduced exponential variogram can be found by solving 
Equation (5). 

It must be noted that when there is a significant difference between ranges ,,,1, kiai …=  of the 
input spherical variogram (for instance, the range of the first structure is 5 or more times smaller 
than the range of the second structure), a single structured exponential variogram (4) may not 
yiled the behavior of the reproduced variograms by the sequential simulation. Therefore, in that 
case, a condition that the exponential variogram is a single structure needs to be relaxed.  Instead, 
it needs to be assumed that the exponential variogram reproduced by sequential simulation has 
the same number of nested structures with the same contributions kici ,,1, …= , as the input 
spherical variogram and only the ranges ,,,1, kibi …=  of the exponential nested structures are 
unknown, 
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Then in addition to equation (2), we need to impose k-1 additional constraints to find all k 
unknown ranges of correlation in order to find the exponential variogram reproduced by 
sequential simulation. In the case of two structured input spherical variogram, the second 
condition is the equality of spherical variogram and reproduced exponential variogram at lag 

distance 1h  corresponding to ,
2
2

1
c

c +  that is, 
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To illustrate this approach to find the exponential variogram that is reproduced when applying 
sequential simulation with limited search strategy and input spherical variogram, several small 
examples will be considered in the next section. 

Small examples 

Several simulation studies are documented to investigate the proposed method for finding the 
exponential variogram reproduced by sequential simulation with a limited search strategy. In all 
cases unconditional SGS was applied with the number of simulated data used for subsequent 
sequential generation of the unknown property values equal to 8.  In order to reduce the impact of 
ergodic fluctuations, the size of the domain for simulation was chosen several (at least 6) times 
larger then the largest range of correlation. 
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Specifically, data was simulated on the grid of 512 x 512 (262144 in total) cells of size 1 by 1 in 
the X and Y directions, respectively. Twelve different input spherical variograms were considered: 
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The reproduction of all six considered variograms is shown in Figure 2.  This figure also shows 
the respective exponential fits obtained by method outlined above.  These exponential variograms 
are also listed below 
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It is clear from Figure 2 that the reproduction of the input spherical variogram in the sequential 
Gaussian simulation with limited search strategy is not great.  The shape of the reproduced 
variograms is exponential.  Moreover, it is seen that the method for finding exponential 
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variogram reproduced by sequential simulation with limited search strategy performs quite well.  
The exponential variograms closely match the reproduced variogram.  This, of course, confirms 
the above made conclusion about the correspondence between perfect screening of the 
exponential variogram and the limited search strategy in sequential simulation with input 
spherical variogram.  

It was also noted in this study that with increase in the number of simulated values in subsequent 
simulation of other values in the domain of interest, spherical variogram reproduction by 
sequential simulation improves largely (the shape of the reproduced variograms no longer 
resembles an exponential). Moreover, with very large number of data, e.g., 128 data, the 
reproduction of the input variogram is correct (see Figures 3 and 4 for the reproduction of 
spherical variograms 1 and 12, respectively).  So, in general, we can conclude that in order to 
obtain good reproduction of the input variogram to sequential simulation, large search strategy 
(number of previously simulated values) should be used as a rule. 

Conclusions 

The problem of unsatisfactory variogram reproduction by sequential simulation techniques was 
considered.  The limited search strategy causes the problem.  A perfect screening property of the 
exponential variogram was used for the explanation for this commonly observed phenomenon.  A 
method for finding the exponential variogram reproduced by sequential simulation with limited 
strategy was also proposed.  This method was shown to perform very well in predicting 
exponential variograms in several small simulation studies. 

This helps us understand variogram reproduction in sequential simulation.  The solution was 
already known – use a large number of data, say 48, when using SGS or SIS. 
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Figure 1: Commonly observed problem in reproduction of the input spherical variogram to 
sequential simulation with limited search strategy. Solid red line denotes the input spherical 
variogram to sequential simulation. Blue dashed lines denote the variograms reproduced by 
sequential simulation with limited search strategy. 
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Figure 2: Reproduction of the input spherical variogram by the sequential simulation with 
limited search strategy for the six cases considered in small examples section. Solid red lines 
denote the input spherical variograms. Blue dashed lines denote the respective variograms 
reproduced by sequential simulation with limited search strategy. Black dashed lines denote the 
proposed exponential variograms. (1/2) 
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Figure 3: Reproduction of the input spherical variogram by the sequential simulation with 
limited search strategy for the six cases considered in small examples section. Solid red lines 
denote the input spherical variograms. Blue dashed lines denote the respective variograms 
reproduced by sequential simulation with limited search strategy. Black dashed lines denote the 
proposed exponential variograms. (2/2) 
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Figure 4: Reproduction of the input spherical variogram 1 (see text) by the sequential simulation 
with increase of the number of data used in simulation. Solid red lines denote the input spherical 
variogram. Blue dashed lines denote the respective variograms reproduced by sequential 
simulation. Black dashed lines denote the exponential variogram reproduced by sequential 
simulation with limited search strategy. 
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Figure 5: Reproduction of the input spherical variogram 12 (see text) by the sequential 
simulation with increase of the number of data used in simulation. Solid red lines denote the input 
spherical variogram. Blue dashed lines denote the respective variograms reproduced by sequential 
simulation. Black dashed lines denote the exponential variogram reproduced by sequential 
simulation with limited search strategy. 


