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The use of multiple-point statistics (MPS) shows great promise for characterizing data which 
display high-order structure such as curvilinearity or complex relations between facies.  The use 
of MPS for facies modeling requires a template of points to be defined, within which the relevant 
statistics will be calculated and stored.  This approach is used to minimize both the CPU time 
and memory requirements.  Determining which arrangement of points to use in a MPS template 
is not trivial.  Some points contain more relevant information; others contain significantly less, 
and at a certain distance from the central point some locations may not add any information at 
all.  The methodology proposed here uses two-point entropy to quantify the “goodness” of points 
in a possible template. 

Entropy of Categorical Data 

The two-point entropy of a point n within a MPS template is defined as: 
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where K is the number of possible facies; and Pkk’ is the probability of facies k occurring at the 
central point and facies k’ occurring at point n of the template.  Higher entropy suggests more 
randomness and therefore less correlation between the central, estimated point and point n.  
Therefore, the points with the lowest entropy should be considered to contain the most 
information. 

The central point of the template, which is the point to be estimated or perturbed using MPS, will 
always have the lowest possible entropy value; its two-point entropy is equal to the univariate 
entropy of the data. This value may be found by using the following properties: 

 kkk PP ='  for all k = k’ 

 0' =kkP  for all k ≠ k’ 

 Substituting these values into Equation 1, 
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The maximum two-point entropy value may be found by considering that at some distance from 
the central point of the template, there is no additional information to be gained, randomness (and 
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therefore entropy) is a maximum, and therefore the point n and the central point are entirely 
independent. In this case, 

 '' kkkk PPP ⋅=  for all k and k’ 

 Substituting this into Equation 1, 
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The numerical values of the minimum and maximum possible entropy values do not necessarily 
have any meaning for a given template; however, they could be used to standardize the entropy 
values between 0 and 1, or to define a cutoff for which points should not be included (say, a 
standardized value of 0.7 or greater). 

While a two-point entropy does not necessarily account for all of the complex information 
contained in MPS, using a full N-point entropy would be very time-consuming and cumbersome; 
with K facies and N points in a potential arrangement of points within the template, there are KN 
different MPS histogram classes that would have to be calculated.  This process would then need 
to be repeated for the next possible arrangement of N points and the entropies compared; and so 
on for many arrangements.  For three or four points this would not be an issue, but as the template 
grows to as many as a hundred points or more using the full entropy is no longer feasible. 

Examples 

The attached figures show eight examples using entropy to find the best points for a MPS 
template.  Each example shows the training image from which the entropies were calculated, a 
map of the entropy of points in a 21x21 template (maximum offsets of 10 in each direction), and 
a graph of the entropies of the points, sorted from lowest entropy to greatest.  Some of the notable 
features in the examples are:  (1) In cases where there is repetition of a pattern, the entropy maps 
reflect this feature; (2) When a single structure dominates the training image the shape of the 
entropy “shell” appears ellipsoidal, coinciding with the direction of major continuity; (3) When 
several major structures are clearly visible they are all reflected in the entropy map; (4) With the 
points sorted from lowest to highest entropy, the graphs are obviously increasing. The graphs all 
approach the maximum entropy value asymptotically; (5) Departing from point 1, the central 
point with the lowest possible entropy, the entropy of surrounding points increases quite quickly 
before leveling off near the maximum value. 
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Figure 1: Training image made up entirely of 10x10 squares; map of entropy for a 21x21 
statistical template; graph of entropy of points sorted from minimum to maximum. 
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Figure 2: Training image made up entirely stripes of thickness 10; map of entropy for a 21x21 
statistical template; graph of entropy of points sorted from minimum to maximum. 
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Figure 3: Training image made up of channel and background facies; map of entropy for a 21x21 
statistical template; graph of entropy of points sorted from minimum to maximum. (TI from 
Pyrcz and Deutsch, 2003) 
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Figure 4: Training image made up of two different channels and background facies; map of 
entropy for a 21x21 statistical template; graph of entropy of points sorted from minimum to 
maximum. (TI from Pyrcz and Deutsch, 2003) 



114-7 

  

5-Facies TI

0

0.5

1

1.5

2

2.5

0 50 100 150 200 250 300 350 400

Point

En
tr

op
y

Figure 5: Training image containing five facies with complex relations; map of entropy for a 
21x21 statistical template; graph of entropy of points sorted from minimum to maximum. (TI 
From Deutsch, 1992) 
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Figure 6: Training image containing ellipses of two sizes and orientations; map of entropy for a 
21x21 statistical template; graph of entropy of points sorted from minimum to maximum. 
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Figure 7: Training image containing ellipses of several sizes and orientations, with complex 
facies relations; map of entropy for a 21x21 statistical template; graph of entropy of points sorted 
from minimum to maximum. 
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Figure 8: Training image with four facies created using truncated Gaussian simulation; map of 
entropy for a 21x21 statistical template; graph of entropy of points sorted from minimum to 
maximum. 


