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Kriging is an essential element of modern geostatistics.  This paper presents a thorough review of 
the random function, stationarity, and derivation of the kriging equations for simple, ordinary, 
and universal estimation schemes.  Two different trend estimation schemes with kriging are 
presented.  A simple link between unconstrained and constrained kriging is shown. 

The Random Function Model  

The central paradigm of geostatistics is the description of unsampled locations by random 
variables representing location-dependant probability distributions about the underlying true 
value.  Figure 1 shows a square domain D. Consider within D the random function (RF) Z(u) 
composed of the random variable (RV) set Z(u) = {Z(ul), for all ul ε D}. There are 10 ul’ locations 
where samples are taken and where the Z(ul’) RV formalism is replaced by the single true or 
sample value z(ul’). Although it is not required, the RF Z(u) is usually assumed multivariate 
normal for convenience. 

 
Figure 1: The domain D 

The probabilistic RF/RV approach is neither motivated nor necessitated by the physical geology 
of the underlying mineral or hydrocarbon accumulation. The multivariate Gaussian assumption is 
also unprovoked by any geological interpretation. There may be better approaches. Nonetheless, 
the Gaussian random function representation is convenient in that each random variable Z(ul) can 
be characterized by its conditional cumulative distribution function (ccdf) F(ul; z(ul)|(n(ul))) 
utilizing the n(ul) relevant or close sample data within search neighborhoods or radii centered 
around each ul location. In Figure 1, the value of n(ul) is always some subset of the z(ul’), l’ = 
1,…, 10 vector. Furthermore, the entire RF Z(u) can be fully characterized by the set of all L-
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variate cdfs F(u1,…,ul; z(u1)|(n(u1),…, z(uL)|(n(uL))) for any number L and any choice of the L 
unsampled locations ul, l = 1,…, L.  

When the RF Z(u) model is assumed multi-variate normal meaning all F(ul; z(ul)|(n(ul))) cdfs are 
uni-variate normal and all F(u1,…,uL; z(u1)|(n(u1),…, z(uL)|(n(uL))) ccdfs are L-variate normal. 
Remarkably, these ccdfs can be completely parameterized by inferring the single covariance 
function COV{Z(ul), Z(ul) + h} for all separation vectors h within D. This covariance function is 
referred to as the spatial law of the RF Z(u). 

Decomposition 

The spatial distribution of a continuous random function variable such as Z(u) is of dual 
character: partly structured and partly stochastic. The structured component exists from the 
unique set of depositional events that concentrated the mineral or hydrocarbon and the stochastic 
component is due to random fluctuations in this depositional process. In fact, Georges Matheron 
invented the name and field of geostatistics on the basis of this observation:  

… even though mineralization is never so chaotic as to 
preclude all forms of forecasting, it is never regular enough to 
allow the use of a deterministic forecasting technique. This is 
why (at least, simply realistic) estimation must necessarily 
take into account both features – structure and randomness – 
inherent in any deposit. Since geologists stress the first of 
these two aspects, and statisticians stress the second, I 
proposed, over 15 years ago, the name geostatistics… 
(Journel, 1978).   

This notion of dual character can be represented analytically within the RF/RV formalism.  The 
typical decomposition technique calls for the dissociation of Z(u) into a structured and random 
component: 

 ( ) ( ) ( )= +u u uZ m R  (1) 

where m(u) is the structured component or trend and R(u) is the random component or residual. 
This decision to split the spatial variability observed into a smoothly varying trend component 
and a more erratic residual component is often arbitrary [2].  Moreover, the particular additive 
decomposition in (1) is not really a decision – it is perhaps better described as a necessary 
implication of the kriging algorithm. That is, all unconstrained and constrained kriging implies 
the particular dissociation in (1) and no other.  This is shown explicitly in later sections.   

It is worth reemphasizing that although there are sound geological reasons to consider 
dissociating a smooth m(u) and more random R(u) component from Z(u), the particular additive 
decomposition in (1) is arbitrary and not necessarily supported by any geological phenomenon. 
Better approaches may exist, for example, m(u) and R(u) could be multiplicative. Alternative 
techniques such as these can be should be investigated.  

It is also important to notice that the decomposition in (1) is artificial. Truly there is no m(u) and 
R(u) samples – only Z(u) is sampled in reality. These variables exist only out of the artificial 
construct (1) required by kriging. In particular, and as we will see explicitly later, this leads to the 
requirement of residual covariances, that is, the spatial law of R(u), in the implementation and use 
of the kriging estimator. Kriging then requires a model of m(u) so that R(u) can be calculated in 
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practice. However, since neither m(u) nor R(u) are available in reality, the spatial variability and 
model of m(u) is often subjective and difficult to capture correctly. The mean model m(u) almost 
always robs the residuals of spatial variability needed for accurate spatial interpolation with the 
kriging equations and uncertainty representation in subsequent simulation. This is the core reason 
why the theoretical development and practical implementation of kriging are quite different. 

Stationarity 

It is impossible to rigorously infer the spatial law of Z(u) or COV{Z(ul), Z(ul) + h} with the z(ul’) 
vector. This could only be possible if z(ul’) represented multiple realizations of the true z(ul) 
values at all possible locations ul within D [1]. If this were the case, however, there would be no 
inference problem left. The sample vector z(ul’) could not possibly contain this amount of 
information since in reality there is only a single true underlying geologic occurrence and limited 
sample data. A decision of stationarity must be made in order to substitute the need for repetitive 
realizations at ul locations for scattered (single realizations) sampling at ul’ locations. 

The most severe assumption of stationarity entails invariance of the full L-variate joint 
distribution function under any translation h within the domain D: 

 
( )

( )
1 1 1

1 1 1

,..., ; ( ) | ( ),..., ( ) | ( )

,..., ; ( ) | ( ),..., ( ) | ( )= + + + + + +

u u u u u u

u h u h u h u h u h u h
L L L

L L L

F z n z n

F z n z n
(2) 

However, virtually all geostatistical techniques can be applied with a much less stringent second-
order assumption of stationarity. This entails relation (1) with L = 2. All one-variate cdfs F(ul; 
z(ul)|(n(ul))) are equivalent to the ccdf formed by all available z(ul’) sample values within D. And 
all joint two-variate ccdfs F(ul, ul + h; z(ul)|(n(ul), z(ul + h)|(n(ul + h))) are equivalent to the joint 
distribution of all possible pairs of sample data approximately separated by h (z(ul’), z(ul’ + h + 
T)). The tolerance tensor T is required since the ul’ locations are rarely regularly spaced in 
practice. This assumption or decision of second-order stationarity then implies the following first-
order mean and second-order covariance relationships:  

1. The mean is independent of location, 

 ( ){ }E m= ∀ ∈u u Dl lZ  (3) 

2. The covariance is independent of location depending only on the lag vector h, 

 ( ) ( ) ( ){ } 2COV E m ,= + ⋅ − ∀ + ∈h u h u u u h DZ l l l lZ Z  (4) 

The assumption of stationarity allows inference. In particular, the spatial law of Z(u) can be 
assessed by evaluating COV{Z(ul), Z(ul) + h} with COVZ(h) which is simply the experimental 
covariance of all pairs of sample data approximately separated by h (z(ul’), z(ul’ + h + T)) within 
D. 

It is worth emphasizing in this work that strangely it is not the spatial law of Z(u) that is required 
to interpolate z(ul’) data using the unconstrained and constrained kriging equations. It is in fact the 
spatial law of R(u) that is required for any form of kriging. This is shown explicitly in the next 
section. The residuals are also assumed second-order stationary (replace Z with R in (3) and (4)). 
And the COV{R(ul), R(ul) + h} spatial law of R(u) is calculated with COVR(h), the experimental 
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covariance of all pairs of residual data approximately separated by h (r(ul’), r(ul’ + h + T)) within 
D. This requires prior modeling of the locally varying mean m(u).  

Decisions of stationarity are not manifested from physical phenomenon; rather, they are a 
necessary consequence of the RF/RV approach. These decisions amount to assume the geology is 
homogeneous within certain spatial domains, see (3) and (4). Therefore, these decisions are 
necessarily subjective and can never be refuted, validated, or tested a-priori; however, they can be 
argued inappropriate a-posteriori. That is, it is always possible to observe large-scale smooth 
changes or non-stationarities.  

A General Kriging Estimator  

All forms of kriging including unconstrained (simple) and constrained (ordinary and universal) 
kriging rely on the artificial construct in (1). Consider in Figure 1 estimation at the central u0 
location using the following linear kriging estimator: 

 
0( )

K 0 K ' '
' 1

( ) A ( ) ( )
=
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u
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n

*
l l

l
z z  (5) 

The number of conditioning data n(u0) for estimation depends on the size of the search window 
W(u0). Two search windows where n(u0) = 2 and n(u0) = 5 are shown in Figure 1. A is a constant 
shift parameter and λK(ul) are the kriging weights assigned to the z(ul’) data. The estimate z*K(u0) 
and data z(ul’) can also be represented in probabilistic notation corresponding to the following RV 
estimator: 
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The actual error of estimation x(u0) is: 

 0 0 K 0( ) ( ) ( )= −u u u*x z z  (7) 

Little can be done about (7) unless its probabilistic version X(u0) is considered: 

 0 0 K 0( ) ( ) ( )= −u u u*X Z Z  (8) 

In this case, the expected value and variance of X(u0) can be calculated and thus acted upon [3]. 
In fact, it is these two moments of X(u0) that allow the kriging equations to develop. In particular, 
we require the expected value of X(u0) to be zero and the variance of X(u0) to be a minimum. This 
is another reason/advantage of adopting the RF/RV approach. The expected value of the error 
X(u0) is: 
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 (9) 

In order for the kriging estimator Z*K(u0) to be unbiased, this expected error must be zero; 
therefore, the shift parameter A is set to: 
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Indeed, now the E{X(u0)} is zero (from (9) and (10)). And the kriging estimator is then: 
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So the unbiased kriging estimator Z*K(u0) appears as the result of linear estimation of the residual 
at location u0 from the residual sample data at the n(u0) locations ul’ [3]: 
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 (12) 

There are some important observations to make at this point. First notice that the general kriging 
estimator Z*K(u0) in formula (12) directly relies on the additive decomposition of the Z(u) RF in 
formula (1). And recall this decomposition is arbitrary in the sense that there is no undisputable 
physical evidence for it or actual data for its dissociated components; yet, as (12) shows, it is 
necessary in order to develop the kriging estimator and subsequent kriging equations. This is 
unfortunate since there are indeed no m(u) and R(u) data. Only Z(u) is sampled in reality and can 
be used explicitly. This presents some implementation challenges and differentiates the theory 
and practice of kriging. 

The other moment of X(u0) required to develop the kriging equations is its variance: 
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It is already apparent, without yet mentioning any particular type or flavor of kriging, that it is 
always the spatial law of the unknown and unsampled R(u) RF that is required and not the spatial 
law of Z(u). The unbiasedness conditions in relation (10), the estimator in (12), and the 
subsequent error variance in (13) are general results for any type of unconstrained and 
constrained kriging. The different flavors of kriging simply correspond to different mean models 
or forms of stationarity in (1) and (12) which require different (unconstrained vs. constrained) 
forms in the unbiasedness conditions in (9) and minimum error variance in (13). 

Simple Kriging Equations 

The kriging system results from minimizing X(u0) in (13) subject to unbiasedness in (9). 
Unconstrained and constrained kriging simply consider different models for the mean m(u) and 
levels of stationarity. Unconstrained kriging is known better as Simple Kriging. The simple 
kriging algorithm assumes the mean is constant over the entire domain D: 

 ( ) = ∀ ∈u u Dm m  (14) 

This equivalency corresponds to first-order stationarity. The shift parameter A becomes: 
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And the simple kriging estimator Z*SK(u0) is: 
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Notice the simple kriging estimator is unbiased since the expected error is zero: 
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 (17) 

Simple kriging is referred to as unconstrained since there were no additional constraints that need 
to be imposed in order to achieve (17). There remains to determine the simple kriging weights 
λSK(ul’), l’ = 1,…, n(u0). These n(u0) weights are determined so that the error variance in relation 
(13) is a minimum. This is done by setting the partial derivatives of (13) with λK(ul’) replaced 
with λSK(ul’) with respect to λSK(ul’) to zero: 

 
{ }( )

( ) { } { }
0( )

0
' 0 SK ' ' ' 0

'=1SK '

VAR ( )
COV ( ) ( ) ( )COV ( ) ( ) 0 ' 1,..., ( )

2 ( )
∂

= − = =
∂ ∑

uu
u u u u u u

u
λ

λ

n

l i l i
il

X
R R R R l n (18) 

This results in the following system of simple kriging equations: 
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There are n(u0) equations with n(u0) simple kriging weights λSK(ul’) to be determined. 

The Universal Kriging Equations 

Constrained kriging is known as Universal Kriging or perhaps better named Kriging with a Trend 
since the m(u) trend component in (1) and (12) is locally varying. The current approach is to 
assume the m(u) component is a smoothly varying deterministic function of the coordinates 
vector u whose unknown parameters are fit from the data within local search windows [4]: 

 ( ) ( ) ( ) ( )W W W
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v v
v=
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The fv(u)’s are known and constant functions of the coordinate vectors over the domain D. The 
av(uW)’s are estimated and constant within local search windows W(u) centered on the unsampled 
locations. The actual m(uW)’s trend values are unknown since the av(uW)’s are also unknown. 
From here on, the superscript W will be dropped since it is usual that the conditioning region uW 
is taken as the global domain. For example, it is unrealistic for the parameterization of m(uW) 
with the av(uW)’s to change for v > 0 within a domain where an otherwise stationary random 
function is assumed. 

The shift parameter A becomes: 
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And the universal kriging estimator Z*UK(u0) is then: 
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There are many ways to ensure the universal kriging estimator Z*UK(u0) is unbiased. The classic 
approach is to impose the following V + 1 constraints: 
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where fv(u) are the monomial trend functions evaluated at the unsampled locations ul within D 
and fv(ul’) are the monomial trend functions evaluated at the sampled locations ul’. By considering 
these constraints (23), the resulting universal kriging estimator Z*UK(u0) is then unbiased: 
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Universal kriging can be referred to as constrained kriging since there are V + 1 additional 
constraints (23) that need to be imposed on the system in order to achieve unbiasedness in (24). 
There are, however, many other possible constraints that can be imposed in order to achieve 
unbiasedness. These should be investigated. Notice the universal kriging estimator in (22) can be 
significantly reduced to a linear combination of the n(u0) universal kriging weights λUK(ul’) and 
RVs Z(ul’), l’ = 1,…, n(u0), due to the unbiasedness constraints in (23). The form in (22) is 
emphasized in this work, however, since it is consistent with (12) and (13) and the requirement 
for the spatial law of R(u).  

There remains to determine the universal kriging weights λUK(ul’). These n(u0) weights are 
determined so that the error variance in relation (13) is a minimum. However, in this case, the 
minimization must be performed subject to the V + 1 constraint equations in (23). These 
constraints call for the definition of a Lagrangian function G(u0) [5] that depend on the n(u0) 
universal kriging weights λUK(ul’) in addition to the Lagrange parameters 2μv(u0): 
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The optimal weights λUK(ul’) are obtained by setting the n(u0) partial derivatives of (13) with 
λK(ul’) replaced with λUK(ul’) with respect to λUK(ul’) to zero and the (V + 1) partial derivatives of 
(25) with respect to μv(u0) to zero: 
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This results in the following system of universal kriging equations: 
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There are (n(u0) + V + 1) equations with n(u0) universal kriging weights λUK(ul’) and (V + 1) 
Lagrange parameters μv(u0) to be determined. 

The Ordinary Kriging Equations 

By convention f0(u) = 1 and m(u) = a0(u) in all of relations (20) through (27). This corresponds to 
the Ordinary Kriging case where m(u) is re-estimated to a constant a0(u) value within local often 
overlapping search windows W(u) ~ uW.   

The Spatial Law for Kriging 

Recall that the spatial law of the RF Z(u) is COV{Z(ul), Z(ul) + h}. The goal is to estimate or 
interpolate Z(u) at unsampled (ul) locations from sampled (ul’) locations. However, the unbiased 
kriging estimator Z*K in formula (12) and all universal and constrained kriging estimators, (16) 
and (22), appear as the result of a linear estimation of the residuals at all the unsampled locations 
ul from the residual at the n(u0) sample locations ul’.  

It is perhaps unintuitive that the ensuing kriging systems of equations (16) and (22) do not require 
the spatial law of Z(u). Actually, it is the spatial law of the R(u) RF COV{R(ul), R(ul) + h} that is 
required, see (19) and (27). There are a number of practical implementation challenges associated 
with inferring the spatial law of R(u) since there are no r(ul’) samples. The only exception is for 
simple kriging where (14) applies and COV{R(ul), R(ul) + h} = COV{Z(ul), Z(ul) + h}. 

Kriging the Trend 

System (27) provides the universal kriging weights λUK(ul’) needed to calculate the universal 
kriging estimate Z*UK(u0). The av(u)’s and resulting m(u)’s are implicitly estimated. However, it 
is possible to estimate the m(u) values directly. Two approaches are taken in this work. The first 
approach explicitly estimates m(u) with the m*UK(u0) estimator with the av(u) estimates hidden 
within the algorithm. This is labeled the explicit approach. The other approach estimates m(u) 
implicitly by first estimating the av(u)’s with the av*(u0) estimator and then setting the final 
estimate of m*UK(u0) to the weighted linear combination in (20) with av(u)’s replaced with 
av*(u0). This is labeled the implicit approach. The resulting implicit universal kriging for the 
mean system reveals a very simple relationship between unconstrained and constrained kriging in 
the next section. 

The Explicit Approach 

The form of the mean m(u) as a deterministic function of the coordinates vector u (20) does not 
change. The shift parameter A is then also the same. The universal kriging mean estimator 
m*UK(u0) then also has the same form as (22), except with the universal kriging weights λUK(ul’) 
replaced by the universal kriging for the mean weights λm

UK(ul’): 
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m a f a f Z

a f Z a f
 (28) 

The error of estimation Y(u0) is then: 
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 0 0 UK 0( ) ( ) ( )= −u u u*Y m m  (29) 

The same (V + 1) constraints in (23) ensuring unbiasedness of the Z*UK(u0) estimator, ensures 
unbiasedness of the m*UK(u0) estimator:  
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 (30) 

Similar to the universal kriging estimator in (22), notice here that the universal kriging estimator 
for the mean in (28) can be significantly reduced to a linear combination of the n(u0) universal 
kriging for the mean weights λm

UK(ul’) and RVs Z(ul’), l’ = 1,…, n(u0), due to the unbiasedness 
constraints in (23). Here, however, (13) is not relevant since the deterministic m(u0) term causes 
the error variance VAR{Y(u0)} to take a different form:  
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 (31) 

where the first two terms in the last line are zero since the m(u0) component is modeled as a 
deterministic component. This property (E{m*UK(u)m(u)} = E{m*UK(u)m(u)} = 0) is used in the 
derivation of the universal kriging for the mean system. The resulting error variance is then: 
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(32) 

The universal kriging weights to the mean λm
UK(ul’), l’ = 1,…, n(u0) are determined so that the 

error variance in relation (32) is a minimum subject to the (V + 1) constraint equations in (23). A 
new Lagrange function for the mean Gm(u0) is then defined: 

 { } ( )
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Y f f v V  33) 

And the optimal weights λm
UK(ul’) are obtained by setting simultaneously the n(u0) partial 

derivatives of (32) with respect to each of the λm
UK(ul’) weights to zero and the (V + 1) partial 

derivatives of (31) with respect to each μm
v(u0) Lagrange parameter to zero: 
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Notice that the closeness covariances COV{R(ul’), R(u0) + h} are all zero. Indeed, this is due to 
E{m*UK(u)m(u)} = E{m(u)m(u)} = 0. 

This results in the following system of universal kriging for the mean equations: 
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 (35) 

The system in (35) calculates the λm
UK(ul’) and μm

v(u0) values that identify the least squares fit of 
the m*UK(u0) trend model. Notice that this is equivalent to the universal kriging system in (27) 
except the closeness (co)variances COV{R(ul’), R(u0) + h} are zero. There are a total of (n(u0) + V 
+ 1) equations with n(u0) universal kriging weights λm

UK(ul’) and (V + 1) Lagrange parameters 
μm

v(u0) to be determined. 

The Implicit Approach 

Estimation of the trend component with m*UK(u0) in (28) is equivalent to first estimating the (V + 
1) trend coefficients av(u), then computing the trend estimate simply as a linear combination of 
the constant trend functionals fv(u) [5]. This is the essential element of the implicit approach. 
Consider the following estimator for the mean coefficients: 
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The λv’
a(ul’)’s are the weights assigned to the corresponding z(ul’) sample data for the v’th 

functional coefficient estimate a*v’(u0). The trend estimator from the explicit approach is then 
equivalent to: 

 UK 0 0 0
=0

( ) = ( ) ( )∑u u u
V

* *
v v

v
m a f  (37) 

The error O(u0) of estimating each v’ functional constant a*v’(u0) is then: 

 0 ' 0 ' 0( ) ( ) ( )= −u u u*
v vO a a  (38) 

The expected error can be written as: 
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In order for the expected error E{O(u0)} to be zero and a*v’(u0) to be unbiased, the following (V + 
1) constraints can be imposed: 
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Using (40), the E{O(u0)} term in (39) is indeed zero. Similar to (31) (since the av’(u0) component 
is deterministic), the error variance VAR{O(u0)} can be significantly reduced to VAR{a*v’(u0)}: 
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And similar to (32), the final error variance is then: 
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The λv’
a(ul’) weights are determined so that the error variance in relation (42) is a minimum 

subject to the (V + 1) constraint equations in (40). A new Lagrange function Gv’
a(u0) is then 

defined for each functional coefficient with the Lagranges 2μv’
a(u0): 
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And the optimal weights λm
UK(ul’) are obtained by setting simultaneously the n(u0) partial 

derivatives of (32) with respect to each of the λm
UK(ul’) weights to zero and the (V + 1) partial 

derivatives of (31) with respect to each μm
v(u0) Lagrange parameter to zero: 
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This results in the following system equations for estimating a*v’(u0): 
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 (45) 

This system must be set up and solved v times at each unknown location u0, once for each 
functional parameter fv(u) specified in (37). Also notice that the closeness covariances 
COV{R(ul’), R(u0) + h} are all zero. Indeed, this is due to E{a*v’(u0)av’(u0)} = E{av’(u0)av’(u0)} = 
0. The system in (45) then calculates the λv’

a(ul’) weights and μv’
a(u0) values that identify the least 

squares fit of the a*v’(u0) coefficients. Then m*UK(u0) is obtained by combining the a*v’(u0) 
coefficients with the  functionals in (37).   

The Link between Unconstrained and Constrained Kriging 

The unconstrained (simple) and constrained (universal) kriging equations in systems (19) and 
(27), respectively, depend on the same form of kriging estimator Z*K(u0) in relation (12) and 
subsequent error variance in relation (13). The spatial law of residuals R(u) is then a common 
requirement for both systems. However, the reader may be hesitant to accept that both 
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unconstrained and constrained kriging simplify to the same general form of kriging estimator 
Z*K(u0) in (12) and require the same R(u) spatial law. In fact it can be shown that by setting m = 
m*UK(u0) in (16) gives back the universal kriging estimator Z*UK(u0), that is: 
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Formula (46) does not change the general form of (12) or (13). The model assumed for the mean 
is simply different. This section proves the equality in (46) three different ways. The first 
approach, adapted from Armstrong [6], explicitly replaces m with m*UK(u0) and checks that 
system (27) is unchanged. This requires the system of universal kriging for the mean equations in 
(35). The second approach follows what is referred to as the additivity relationship as described 
by Chiles and Delfiner [7]. This requires the system of equations for estimating the mean 
coefficients in (45). The third approach exploits some relatively simple matrix manipulations 
following a set of advanced geostatistics course notes [8] taught at the University of Alberta. This 
also requires the system of universal kriging for the mean equations in (35). 

The Substitution Approach 

The simple kriging estimator Z*SK(u0) in (16) can be rearranged as follows: 
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The stationary mean m is now replaced with the kriging mean estimator m*UK(u0) in (28): 
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 (48) 

This estimator (48) is in fact equivalent to the universal kriging estimator Z*UK(u0). In order to 
prove this, it is sufficient to show that the estimator in (48) satisfies the universal kriging system 
in (27) [6]. The constraints in (23) are checked first. Since the sum of the universal kriging of the 
mean weights λm

UK(u0) is always one for all v = 0,…, V: 
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Relation (49) shows that in addition to satisfying the constraints in (23), the second line of the 
universal kriging system shown in (27) is satisfied. And all that is left to show is that the first line 
of system (27) is satisfied. The weight expression in (48) is substituted for the universal kriging 
weights λUK(u0) in the first term multiplying the redundancy covariances in (27): 
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The substitutions in the last line come from the simple kriging system in (19) and the universal 
kriging of the mean system in (35). Now, since: 
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Substituting back, the first line of system (27) is indeed preserved: 
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The Additivity Approach 

The additivity approach is more subtle, but is imbedded within an informative additivity theorem 
[7]. This theorem implies that the universal kriging estimator Z*UK(u0) in (46) can be decomposed 
into the sum of the simple kriging estimator Z*SK(u0) and some corrective difference term Z*D(u0) 
as follows: 

 UK 0 SK 0 D 0( ) = ( ) + ( )u u u* * *Z Z Z  (53) 

The corrective term Z*D(u0) can be isolated and solved for by manipulating systems (19) and (27) 
according to (46). Matrix notation will make this process more efficient. The unconstrained 
kriging system in (19) becomes: 

 SK =C cλ  (54) 

where C represents all the redundancy covariances COV{R(ul’), R(ul’) + h}, c is the closeness 
covariance vector COV{R(ul’), R(u0) + h}, and λSK represents the n(u0) simple kriging weights 
vector λSK(ul’). Similarly, system (27) is rewritten: 

 UK
T

0

+ =C F c

F f

λ μ

μ =
 (55) 

where F represents the fv(ul’) coefficients, μ represents the μv(u0) Lagrange parameters, and f0 
represents the fv(u0) values. The solution of Z*D(u0) is sought after and this requires the Z*SK(u0) 
to be subtracted from the Z*UK(u0) estimator, see (46). In making this subtraction, consider now 
carrying the entire system of equations with the operation. That is, the system in (54) is subtracted 
first from the first line of system (55) and then from the second line of system (55) to form a new 
system of equations for Z*D(u0): 
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( )

( )
UK SK

T T
UK SK 0 SK

0− + =

−

C F

F f F

λ λ μ

λ λ = − λ
 (56) 

The solution of system (56) must take into account the general least squares estimate of the mean 
general formula in (46). For this, the system in (45) is solved. Setting a to the a*v’(u) estimates 
and z to the data vector, the general least squares solution is [7, 9]: 

 ( )* T -1 T -1=a F C F F C z  (57) 

The system (56) can be resolved for (λUK – λSK) from either the first or second line in (56). Using 
the second line: 

 

( )
( )

( ) ( )
( )

T T
UK SK 0 SK

-1 T -1 T
UK SK 0 SK

-1-1 T -1 T
UK SK 0 SK

* T
UK SK 0 SK

−

⎡ ⎤− = ⎣ ⎦

⎡ ⎤− = ⎣ ⎦
⎡ ⎤− = ⎣ ⎦

F f F

FC F FC f F

FC F FC f F

a f F

λ λ = − λ

λ λ − λ

λ λ − λ

λ λ − λ

 (58) 

Returning to summation notation: 

 

( )

[ ]
0

0

0

* T
UK SK 0 SK

( )

0 0 SK ' '
=0 '=1

( )

0 0 SK ' ' '
=0 '=1 =0

( )

UK 0 SK ' UK '
'=1

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

⎡ ⎤− = ⎣ ⎦
⎡ ⎤

= −⎢ ⎥
⎣ ⎦

⎡ ⎤
= − ⎢ ⎥

⎣ ⎦

⎡ ⎤= − ⎣ ⎦

∑ ∑

∑ ∑ ∑

∑

u

u

u

a f F

u u u u

u u u u u

u u u

λ

λ

λ

λ λ − λ
nV

*
v v l v l

v l

nV V
* *
v v l v l v l

v l v

n
* *

l l
l

a f f

a f a f

m m

 (59) 

The (λUK – λSK) quantity is, therefore, a trend adjustment involving the universal kriging least 
squares mean estimate m*UK(u). Now, recombining the result of (59) with (53): 

 
0 0

0

UK 0 SK 0 D 0

( ) ( )

SK ' ' UK 0 SK ' UK '
'=1 '=1

( )

UK 0 SK ' ' UK '
'=1

( ) = ( ) + ( )

= ( )Z( ) ( ) ( ) ( )

( ) + ( ) Z( ) ( )

⎡ ⎤− ⎣ ⎦

⎡ ⎤= −⎣ ⎦

∑ ∑

∑

u u

u

u u u

u u u u u

u u u u

λ λ

λ

* * *

n n
* *

l l l l
l l

n
* *

l l l
l

Z Z Z

+ m m

m m

 (60) 

The result in (46) is achieved.  

The Matrix Manipulation Approach 

This is perhaps the most direct and comprehensible of all 3 approaches. The left hand side matrix 
of the universal kriging system in (55) can be written as: 

 T

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

C F
T

F 0
 (61) 
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with λ = [λUK, μ]Τ and t = [c, f0]Τ; therefore, λ = Τ−1t. The universal kriging system of equation is 
then written in terms of the simple kriging system and weights. From (55): 

 1 1
UK SK

− − −C c C F Fλ = − μ = λ μλ  (62) 

since CλF = F. Solving for μ from (62) as: 

 
T

UK SK SK
T

F
F F F

λ − λ 1− λ
−μ = =

λ λ
 (63) 

And substituting (63) into (62) results in the following universal kriging weights: 

 
T

SK
UK SK T

⎛ ⎞1
+ ⎜ ⎟

⎝ ⎠

F F
F F

− λ
λ = λ λ

λ
 (64) 

And universal kriging estimator: 

 
T

T T TSK
UK 0 UK SK T( ) =

⎛ ⎞1
= + ⎜ ⎟

⎝ ⎠

Fu z z z F
F F

*Z − λ
λ λ λ

λ
 (65) 

The universal kriging for the mean weights from (35) can be expressed as: 

 m m 1 m
UK =−C F Fλ = −μ − μ λ  (66) 

And the universal kriging for the mean estimator becomes: 

 
T

T m m T
UK 0 UK T( ) = ==

z Fu z z F
F F

*m λ
λ −μ λ

λ
 (67) 

Since –μm = 1/FTλF (comes from (66)). Now the universal kriging estimator is written using (65) 
and (67):  

 
( )

0

T
T T

UK 0 SK SKT

( )

UK 0 SK ' ' UK 0
'=1

( ) = + 1

= ( ) + ( ) ( ) ( )

−

⎡ ⎤−⎣ ⎦∑
u

z Fu z F
F F

u u u uλ

*

n
* *

l l
l

Z

m Z m

λ
λ λ

λ  (68) 

which matches (46). 

All three of these proofs show that constrained kriging can be performed in two steps: 

1. Least squares estimation of the local mean m*UK(u0) using universal kriging; 

2. Applying the simple kriging estimator in (16) with the stationary mean m replaced with 
the estimated mean m*UK(u0). 

Furthermore, this proves the kriging estimator Z*K(u0) construct in relation (12) is the same for 
unconstrained and constrained kriging. This same construct leads to the error variance in relation 
(13) and the common need for the R(u) covariance or spatial law. 
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