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A categorical variable describes the objects in a population which can be divided into a group of
categories. The distribution of lithofacies, an example of categorical variable, is one of the most
important factors in reservoir modeling. Many critical petrophysical properties in reservoir
analysis and estimation, such as porosity and permeability, are highly correlated with facies type.
A correct and precise modeling and estimation on the spatial distribution pattern of various
facies categories over the area of interest will be significantly helpful for our modeling and
estimation on the reservoir characteristics and performance. In the practice of facies modeling
and analysis, we need to deal with data at different support, either point data or scaled up block
data. The scaled up facies proportion will take different values and have different distribution
along with the changes in block scale. In this paper, we will start from a facies category training
image in CCG training image library to analyze the distribution at different scales. The mean,
variance and variography of the scaled up facies proportion, as well as the shapes of the
distribution, will be observed and analyzed at different scale. Analytical fitting of the marginal
and joint distribution of multivariate indicator variables will be derived and its application
multiscale indicator mapping will be discussed.

Introduction

A categorical variable describes the objects in a population which can be divided into a group of
categories. One important example of categorical variable in mining, petroleum industry and
geological study is the lithofacies. Suppose in a three-dimensional space Q, there exist K facies
categories S, S,,...,S, . Each single point u_ in the space is corresponding to an exact facies

category, that is, a set of indicator variables I(u,,k) (k=12,...,K), such that I(u,,k)=1
when the facies category at u, is S, and I(u,,k) =0 otherwise. Scaling up the facies
categories over a neighborhood Vv, of location u,, the proportion of category S, is obtained by:

p, = pv(u,k):%.[l(u,k)dv, k=12,..,K.

\

The values and distributions of proportions p, (u,k) are volume-dependent, that is, at different

scales of the neighborhood Vv, , we will get different values and distribution. Figure 1 gives a brief
illustration on the volume-dependent distribution of a categorical variable.
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In this paper, we will take lithofacies as an example, start from a facies category training image in
CCG training image library and discover how distribution of a categorical variable changes with
the volume. In part | of this paper, we give a brief review on the previous research in this area. In
part 11, we give a brief description about the data. In part 111, we observe and describe the changes
in distributions of facies proportion in three aspects: i) shape and continuity, ii) mean and
variance, and iii) variography. In part IV, we apply a series of parametric distribution to fit the
marginal as well as the multivariate facies proportion model and compare the results with the
training image data. In part V, an application of the analytical fitting in multiscale facies indicator
mapping will be discussed and Part VI will give the related sample case study.

Scaling Laws

For many years, researches have been carried out by many scientists and geostatisticians about
volume dependent distribution on facies categories and proportions, particularly with effort to
discover the scaling laws, governing the changes in mean, variance, covariance and variograms of
facies categories and facies proportions based on a series of volumetric supports, some of the
important works include: (1) Journel and Huijbregts (1978) develop a series of theoretical
concepts and theorems which are widely applied and analyzing scaling laws of categorical
variables in geostatistical study. (2) Isaaks and Srivastava (1989) gave further discussion the
scaling laws based a practical case study. (3) Deutsch and Frykman (1999) gave a full discussion
on semivariogram modeling at different volumetric support as well as sequential simulation based
on multiscale data. (4) Deutsch, Tran and Xie (2001) also gave a detail discussions in direct
sequential simulation based with multiscale well, seismic and production data. The following
concepts and theories are of particular importance in understanding the volume dependent
distribution of categorical variables:

Given two different volumetric supports vand V , three important concepts: dispersion variance

o?(v,V), average variogram 7 (v,V) and mean covariance C(V,V) are defined as (Journel and
Huijbregts, 1978):

o*(v\V)=E[m,-m,T

1

v(v,W)=
y(v,\V) w,

[ ] »y-y)dy'dy
(u) v(u)
1

C(v,V) =

[ ] cly-y)dydy

V (u) v(u')

where m,,m, are means at the support of scale v and V respectively. The average variogram
and mean covariance are in fact the mean values of, respectively, the point variograms »(h) and
covariance C(h), where one extremity of the distance vector hdescribes the domain of V (u)

and the other extremity independently describes the domain v(u'). The follow relationship is
easy to reach (Journel and Huijbregts, 1978):

o’(v,Q)=c’(V,Q)+c*(V,\V) (vcVcQ)

a*(v,V)=C(v,\\)~-C(V,V)=7(V,V)~7(v,v)
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o’(e,0)=0and 7 (Q, Q) = *(s,Q) . The symbol “e " here is used to denote the point data. All

these results provide the essential ideals in understanding changes in variances along with the
volumes based a certain covariance and variogram structure.

For scaled up variable Z,, volumetric support variogram y, (h) is defined as:

7,0 = E{[Z, () ~Z, (u+ )]} where Z,u) = [ Z(y)ay

v{u)
Journel and Huijbregts (1978) showed that scaled up semivariogram could be expressed as:
2y,(h) = 2y[v(u),v(u+h)]-y[v(u),v(u)] - 7[v(u+h),v(u+h)]
Based on stationarity assumption, we have
7Iv(u),v(u)]=y[v(u+h),v(u+h)] =y (v,v)

and thus
7,(h) =7[v(u),v(u+h)]-y(v,v)

For a large distance h compared with the size of block Vv, the value of »[v(u),v(u+h)] will be
much closed to the point variogram y(h). In this case, 7, (h)=y(h)—7(v,Vv). The changes in
variograms can therefore be predicted along with the changes in volumetric support.

As discussed by C.V. Deutsch and P.Frykman (1999), The fitted variogram model at arbitrary
scale v is defined as:

nst

7,(0)=CJ+> CI" (h)

where T (h) represents i" nested structure and nst the total number of nested structures. Also
C? denotes the nugget effect and C! the variance contribution the i nested structure. The sum
of variance contribution equals the dispersion variance, that is:

nst .
o?(v,Q)=C/+>.C,
i=1
with €2 the volume of entire space of interest. The range of the volumetric supported variogram
at a larger volume V increases as the increase in volume size (|V |—|Vv|) in each particular
direction, that is:

a, =a,+(IV|-[v])

Depending on the shape of large volume V , the range may increase in some directions and stay
the same in other directions. The purely random component, the nugget effect, decreases with an
inverse relationship of the volume, that is:

V]
ce=ce-vl
V]
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The changes (decreases) variance contribution of each nested structure along with supporting

volumes are determined by the average variogram T calculated from the nested structure I, that
is:

i i'l_f(\/!v’ai)
& =C 1-T(v,v,a")

An Example

The data for this paper is a facies category training image over a three-dimensional space denoted
as 256x256x128 in terms of xxyxz coordinates, or equivalently denoted as EastxNorthxDepth.
We have six facies categories, S,, S, ,S,,S,,S,and S; of interest. Figure 2 gives the slice maps

along the planes x=50, y=50 and z=50. Figure 3 shows a group of 3-dimensional pictures about
spatial distribution of the facies categories over the area. Figure 4 gives the maps of the vertical

facies proportions over the horizontal area. In this training image, S;,S, andS, are the three

most important categories and their proportions sum to over 90% in most of the area. The
proportion of category S, is 0 and categories S,and S, take only very small part.

In order to obtain a clear picture about the distribution of facies proportion over different scales,
we divided the entire space into blocks of equal scale using a series of sizes: 2x2x2, 4x4x4,
8x8x8, 16x16x16, 32x32x32 and 64x64x64. The proportion of each facies category was
calculated for each block.

Taking as an example the facies category S, Figure 5 gives the histogram of proportion p, over
different scales. At scale of v=I xl,xl,, the facies proportions take some values among

12
{O,—,—,...,l}, At a small scale, the facies proportions take a group of discrete values. As the
VvV V

scale increases, more and more continuous distributions occur. Also, at a small scale, an obvious
bimodal distribution of facies proportion p, is observed. As the scale increases, there exists a

trend of converging to a symmetric unimodal distribution. In Figure 6, we have the histogram of
p, and a similar trend is shown.

The cumulative distribution (CDF) curves give more clear pictures about changes in distribution
along with scales. Figure 7 shows that at scales 2x2x2 and 4x4x4, step-shape CDF curves are
obtained. As the scale increases, the curves become more and more continuous.

Now take a further look at the cdf of proportion p, for facies categories S, : Let p be its prior
global proportion. The value and distribution of p, depend on the scale of supporting volume V.
For v=0, p, =I(u,k), which is either 1 or 0, and P[p, =0]=1-p, P[p,=1]=p. The
cumulative distribution function (CDF):

1-p v0<x<1

p forx>1

F (x) = P[p, SX]={
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For v =00, we have p, = p, and the CDF:

0 X< p
Fk(x)=P[pksx]={1 "o

Figure 8 gives an illustration on shapes of CDF’s at each of these extreme cases. As the scale
increases between 0 and oo, the CDF curves shift between the above extreme cases, Figure 9
shows the changes.

Taking as an example the facies category S, , the mean and standard deviation (S.d.) of proportion
P, are tabulated below:

Table 1 Mean and standard deviation of P, at different scales

Scale 2X2x2 4x4x4 8x8x8 16x16%16 | 32x32x32 | 64x64x64
Mean 0.6648 0.6648 0.6648 0.6648 0.6648 0.6648
S.d. 0.4514 0.4232 0.3898 0.3232 0.2419 0.1372

The mean remains unchanged over different scales and the standard deviation decreases as the
scale increases. Given a certain scale v, where n individual points are located in each block.

The proportion p,(u,,k) of facies category S, can be defined as:

pv(ua,k)=%2|(u;,k) k=12,..K
i=1

Suppose the entire space of interest is divided into m blocks of the same size, then mean of the
proportion p, can be obtained by :

OO NITHOED N I [N
=Y = W) =

The mean of facies proportion over the entire area of interest is independent of the size of the
scale and is equal to the global mean £, . The variance depends on the scale (as described above):

o’(V,Q)=c*(v,Q)—c*(V,V) where vV c Q.
Furthermore, based on the average variogram 7 (v,V) and covariance C(v,V) we have:
a’(v,V)=C(v,v)-C(V,V)=7(V.V)-7(v,V)
or equivalently, the variance of the scaled up variable:
o’ (v, Q) =7 (QQ)-7(v,v) =0’ (2,Q)~7(V,V)
Where o (e, Q) is the variance of the point data over the entire volume () of our interest.

Based on the block v of a certain scale, the semivariogram of facies proportions is defined as:
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7,(h,K)=E{[p, (u,k)— p,(u+h,k)F}

Figures 10 and 11 give the semivariograms of facies proportion p, and p, in x-direction (in

red), y-direction (in green) and z-direction (in blue) at various scales. As the scale increases, the
sill of indicator semivariogram in each direction is decreasing and the plots are flattening,
suggesting a trend of getting more continuous as the scale increase. The changes in ranges are
not obvious in our sample case. The changes in semivariograms of indicators and scaled up facies
proportions are governed by the rules described above.

Univariate Multiscale Distributions

An Analytical description about the distribution of facies proportion is desirable and it enables
more precise modeling and prediction. In this part of the paper, several parametric probability
distributions and their fittings are tested.

Consider the multinomial distribution. Suppose there exists a prior facies proportion for p, for

category S, . The variable X, :Zl(uia,k) , the number of points whereS, occur within a
i=1

certain block v(u,) satisfies the following condition: ZK

=N, where n the entire number

of gridding nodes in the block and Z:ﬂ P, =1. This suggests a multinomial distribution of
variables X, , k =1,2,...,K , that is

n!

p[X1:X1""7XK:XK]:m Py P

One important assumption for binomial distribution is that: indicator variable I(u,,k) and
I(uﬂ,k) are independent from each other for any different locations u,, and u . However, this
is not true in many geological data. See an illustration of semivariogram in Figure 13, those
points with distance less than range a positively correlated and those with variogram values
above sill are negative correlated. Only those with variogram value at sill might be independent.

And the variograms at different direction may have different sills and ranges. The histograms
from simulated multinomial realizations are shown in Figure 12. Here the parameter n takes the

volume of the scale, i.e., at scale of 2x2x2 we assign n=8. Obviously, they are different from
our sample data.

Consider the beta distribution. The beta distribution is defined for a random variable X within a
close interval [0,1], which has the probability density functions (pdf):

_T(a+p) oa N\
M= rarg © 4%
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where the gamma function is defined asT"(z) = _[t“e’tdt and I'(z+1) =zI'(z) . The shapes of
0

the CDF curves are determined by the parameters « and . Based on the known expected
values (global mean P, ) and variances Var, (p,) , the parameters « and / are determined as:

- B pk(l_r)k)_ —(1_ R f)k(l—f)k)_
a_pk[Varv(pk) ] and g=(1 pk)[Val’V(pk) 1.

Furthermore, let Qbe the entire space of interest, and Dkz() be the dispersion variances of
proportion p, based on certain supports, we have:

p.0-B) | DXeQ) | Die)  _ Diew) 1
Var, (p,) D/(v.Q)  D(e.Q)-Di(ev)  Di(e,Q)-Df(ev) 6-1
2(e = o1 = s
D () _ P =P P and ﬂ:—l P The expected value

Where 6 = 5 =— . Thatis: a=
D, (e,V) D, (e,V) 0-1 0-1

and variances are calculated as follows:

o« _ ap
EV[pk]_a+ﬂ' vanlp (a+p)(a+B+1)

Figure 14 gives comparison between the sample distributions (left) and simulated beta
distributions (right) for p, at various scales while Figure 15 gives the overlapped curves of
sample CDF and beta simulated CDF for p, and p,. Some observations:
e The beta simulated realizations give good reproductions of the marginal sample
distributions at most of the scales and the facies categories.

e The Frequencies of extreme proportion values (around O and 1) are partially over-
estimated, making the simulated CDF curves over-smooth at both ends.

e When Var,(p,) >0, both «, f — o0, the distribution goes to normal. Figure 16 gives
the simulated realizations for p,at « and £ values based on some very variance. We see
that it is a normal distribution with mean p,=0.6648

e Some other training images were tested and similar results were obtained for categories
with prior global proportions values not very close to 0 or 1. For those categories with

extreme prior proportions, e.g., greater than 0.99 or less than 0.01, the beta simulated
realization did not reproduced the sample distributions. Figure 17, gives some examples.

If we are to proceed with multiscale facies modeling we require a multivariate distribution and
not simply a univariate distribution.
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Dirichlet Distribution for Multivariate Multiscale Distributions

Generally, for K facies categoriesS,,S,,...,S,, in the area of interest, the proportions
(Py. Pys---s Py ) will fall on a hyperplane determined by p, + p, +...+ P, =1.
In the previous discussion, we realize that a beta distribution will be a workable parametric

distribution in fitting the marginal distribution for each facies proportion. A generalized form of
beta distribution, the Dirichlet Distribution, is therefore considered to fit the joint distribution of

pO’ pl""’ pK—l

A Dirichlet distribution (Johnson and Kotz, 2000), is defined for n random variables
X, X,,..., X, that have the joint probability density function (joint-pdf) given as:

Q.. @) 4
f(x;0)=—==L—| [ x*
HI lr(a ) 1;[

n

where X, X,,...,X, €[0,1] and in =1. And o,,@,,...,, are shape parameters. The
i=1

expected value and variance of each variable are given as:

E[x]=—2—, and Var[x]= @l -al

Zi:lai | Z =1 I] [Z +1]

It can be shown that the marginal distribution of x; follows a beta distribution with (¢, 3,).

n
Taking into consideration the constraint in:l, only n-—1variables are free and
i=1

n-1
X, =1-)> X . The the joint-pdf for Dirichlet distribution can then be expressed as:
i=1
FQL®) i .
F (X Xp 0 X 0) = === Lo [H i R ZX) "
HI =1 (a) =1
Now come back to facies proportion p,, p,,..., Py, the joint pdf can then be fitted as:
I'( .
f(povpli o Py @ )_ Z l_kakl
Hk & I'(e,) k=0
K-1
Or, taking into consideration the constraint Z p, =1, only K —1variables are free and
k=0

K-
P, =1- ) P, . The the joint-pdf for Dirichlet distribution can then be expressed as:
k=0

N
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(Z 71 K-2 )
f(Dgs Pyyeres Prpi @) = =[] P "1 [1- Y p, 1™
| I RXCD) H Z

In case of only two facies categories, it is simplified to a standard beta distribution and
parameters « and S are uniquely determined by mean and variance of any one of the two facies

proportions. In cases where more than two facies categories occur, the following conditions
should all be satisfied:
n
[Z _la - I

E[x]= % and Var[x]= ,i=12,...,n

2@ B OISR OIS

Here we have n variables, ¢, a,,...,,, to determined, satisfying 2n constraints. One possible

way might be focusing on the expectation values and use only the variance of the most important
category. From the mean constraints, we reach:

a, = E[Xi]-zl;:laj = E[x]-v forall i=12,...,n

Here we denote the sum of « ’s asv . Substitute this into the constraint of Var[x,] where X, be
the selected important category. Then we have:
— E[Xd ] ) (1_ E[Xd ])
Var([x,]

and o, =E[x]-0 foralli=12,..,n

A large number of realizations were simulated, using the variance for facies category S, when

fitting the parameters. For facies proportion p,, we got a simulated CDF very close to that as in

beta simulation at each scale. Figure 18 gives some cross plots of joint CDF from the data versus
the joint CDF from the Dirichlet simulated realizations for other facies categories and the
following was observed in the simulation test:

e The shapes of the marginal distributions were approximately reproduced, particularly for
the case of smaller scales.

e The mean of proportion of each facies category was reproduced.

e In the output distributions, the variances for facies proportion p,were reproduced at

different scales of volumetric support, while the variances for other facies categories
were over estimated to different extents. For p, and p,, the estimated variances were

close to the real levels, but for p,and p., the variances were strongly over-estimated
and the shapes of distributions were changed particularly at a larger scale of support.

e In Figure 19, the joint cdf was approximately reproduced by Dirichlet distribution at
small scale, but not at the larger scale.
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Ordinary Beta for Multivariate Multiscale Distributions

One possible solution to problem of variances in Dirichlet distrbution lies in a generalized beta
distribution introduced by Mauldon, 1959. Mauldon defined as follows an integral

transformation (¢ﬁ) of n random variables X, X,,..., X, with joint CDF F (X, X,,...,X,):

¢ﬁ:E[(t—Z?_lajxj)‘ﬂ]:I_wI_w ...Lo(t—Z';:lajxj)‘ﬂdF(xl,...,xn)
and defined X,,X,,...,X, as forming a n-dimensional beta distribution when there exist
parameters C; and g, (i=12,...,r) such that

9= H(t 20426 " where B=37 A,

The c; parameters form a coordinate matrix. Mauldon showed that when the coordinate matrix is
a unit matrix (with all ¢;=1), and X;, X,,..., X, fall within (0,1) and x, +X, +...+ X, =1, the joint
pdf has the form:

I'(p)
f —
(X Hr(ﬂ)HJ =1 J

Mauldon called it basic beta distribution. Note it is in fact the Dirichlet distribution as we
discussed above. Mauldon also showed that any n—dimensional beta distributions can be

obtained by y = Mx from basic beta distributed variables X, X,,..., X, through matrix M . This
is named as Ordinary Beta distribution by Mauldon.

The result from Mauldon is helpful in solving our problem. Let p;, p,,..., P be the K facies

proportion we are modeling, the joint distribution can be modeled by p = Mx where x forms a
Dirichlet distribution with:

E[x]= ﬁandVar[x] BB=F)
B B (B +1)

and
E[p]=M -E[x], COV[p]=M .COV[x]-M'

where COV[x] denotes the covariance matrix of variable vector xand M ' the transpose of
matrix M . Solving the above equation systems we would be able find the matrix M and
parameters S which make p,,..., p, honors population means, variances and covariances.
Specifically, applying a diagonal matrix:

a, 0 0
M = 0 a,, 0
0 0 . aKK
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And Xx=(X,X,,...,X) form a K —dimensional basic Beta (Dirichlet) distribution with
parameters £, (i=12,...,K), we will reach the following system:

B

Var[p,]=4q;-

E[Q]Z

Bi(B-5) 212 K
BA(B+1) o
B=p+05,+..+

Or, equivalently:

a = ﬁ-Var[ pi]+Var[ pi]+ (E[pi])z
11 E[pl]

p=PER] i=12,..,K
a.

/3::/%'+/%'+-~*'ﬁ&

Solve this system for a, and S and thus reach distribution p = Mx which will honor both the

means and the variances. One problem is that the values of p,, p,,..., P, are not guaranteed to
fall within [0,1] or sum to one. This problem can be solved by:

p=—P i=12..K

:E:tq_pi

Figure 20 gives cross plots of the data joint CDF versus the simulated joint CDF. Here we can see
the joint CDF is pretty well reproduced at small scale and also reproduced at large scale. Several
other training images were tested and the similar results were obtained. If a full matrix M is
adopted, the covariance can also be honored and a better fit can be expected. But that will require
solving a very complicated equation system.

One major problem that might occurs in ordinary beta distribution fitting lies in the roots of

B, B’sor a;. When dealing with system as discussed above, we will finally come to equations
th : . . ,

of K™ order polynomials. When in any group of solution, values for £, 3.’s or a; are not all

positive, there will be risk when we draw the realization. It might also be possible that no real
root exists and thus we can not go on. Fortunately, our observations suggest that all the non-real
roots and most of the non-positive roots occur in those extreme situations where the expected

values E[ p,] for certain k ’sin 1,2,..., K are greater than 0.99 or less than 0.01. Note that for all
0<p, <1, we have: Var[p,]=E[p;]-(E[p])* <E[p]-(E[p.])* < E[p,].10°pairs of
uniformly distributed random vectors (u, v), 5-dimentional or 4-dimentional, were drawn such
that 0.01<u(i) <0.99 and 0.0005< v(i) <u(i), treated respectively as E[p]and Var[p] and
did the test. Real roots occurred in all the cases and positive roots occurred in more than 97.5% of
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the cases. In case all real roots were negative, we could slightly reduce the required variances and
obtained positive roots. Based on this observation, when we build the conditional distribution, we

can assign values 0.99 and 0.01 respectively, to E[p,] value when extreme value greater than

0.99 or less than 0.01 occurs. The result will be very close to the original one. And the problem of
non-positive roots can be solved by slightly reducing the maximum of the target variances.

Joint PDF for Ordinary Beta Distribution

The parametric joint pdf for ordinary beta distribution can be derived applying Jacobian
transformation rule. In the transformation p = Mx, where x forms a Dirichlet distribution with

joint pdf:
L'(B) it
fe (XX Hr(ﬂ)H L%
and M an invertible matrix with inverse M~ —[b”] =12,...,K we have
x=MTp
or equivalently X (p)=zlj:lbij p, (i,j=12,..,K). The Jacobian matrix for such
transformation can be expressed as:

J =[s;], where s; = ﬁp(p) by (] yeeny K

j

That is: J =M . Denote the determinant of the Jacobian matrix J as det(J ) and its absolute
value as | det(J) |, applying Jacobian transformation rule, we obtain joint pdf for p as:

£ (PePe) = 1,0 (P). - (P} det(3) | =] det(M ) |- ﬁ;@,) [1.(Cb,p)"

In case we use diagonal matrix for M :

a, 0 0
M — 0 a,, 0
0 0 aKK
where, as previously discussed, a; >0 forall i=1,2,...,K, the joint pdf fp can be simplified as:

i1

I'(B) kK | P _ I'(B) K pi1

fp(pp-“lpK): K 1l 11\ P
[T, T8 H‘[anj H. L&l -T(B)] 1, ()

and joint CDF is derived as:
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Fy (P PO = [ fp(g,...,tK)dg...dtK:HK [ag(.?'r(ﬁ)] 1% (s)"

An Application

Two important sources of data we usually deal with include well data and seismic data. The well
data provide accurate measurements about the vertical distribution of lithofacies, as well as
porosity, permeability and other critical properties in reservoir modeling. However, due to the
high costs and various other reasons, the number of wells are usually too limit to provide enough
information to support an accurate appraisal about a reservoir. In contrast, the seismic data are
generally more abundant, though less precise. Usually the seismic data has less vertical resolution
than the well data and approximately reflect lithofacies proportions and average porosity at a
certain volumetric support. On the other hand, various other sources, such as historical production
record, scientific research discovery, and so on, will also provide information at different scale of
volumetric support about lithofacies and other geological properties. Integrating data of different
scale has always been a critical issues.

Building 3-D realization of lithofacies codes, porosity at a sufficiently detailed resolution to
provide a reliable basis for well planning, volumetric calculations and meaningful effective flow
properties is a key problem in reservoir modeling (Deutsch, Srinivasan 1996). Two basic
categories of algorithms are used in mapping the lithofacies, porosity and other variables: 1)
Estimation algorithms, or, Interpolation algorithms, as named by A.G.Journel and W.Xu (1992),
which yield a unique response, best in some sense. Kriging of different types form a critical
family in this category. 2) Simulation, or stochastic imaging, [A.G.Journel and W.Xu (1992)],
which provide multiple possible realizations of the variable of interest.

Many types of kriging algorithms can be used to map the lithofacies based on well data, seismic
data and various other data of different scale support, such as kriging with external drift, kriging
with local varying mean, block kriging and collocated cokriging. Simulation is closely related to
the kriging algorithms. Usually, a certain type of kriging (or cokriging) approach is used to build
the conditional distribution of a variable at a certain location based on the known data, and
realization is then drawn from the conditional distribution.

Based on the discussion in part IV in this paper, we note that the multivariate distribution of
facies proportions ( p,, p,,..., P« ) for K facies categories (S,,S,,...,S, ) can be estimated by an

ordinary beta distribution determined by the mean and variance of each variable p,

(k=12,...,K). This result leads to another option of mapping the lithofacies categories and
proportions based on the well data, seismic data and other data of different supporting scales.
Suppose in a 3-dimensional space with volume €, we have n, wells located at u_, (o =1,2,...,

n, ) and seismic data is available all over the area we are interested in and gives the block average
at a support of Vv,. Suppose as we want to build a 3-D realization of facies proportions

P, P,.-.., P for the Kfacies categories (S,,S,,...,S, ) over the area and at the volumetric
support of v.
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Applying the Ordinary Beta distribution, our problem is simplified to estimating the local mean
and variance of facies proportion p, (k=1,2,...,K) at each location (u) based on the sample

well data and seismic attributes. The following approaches can be used:

o Kriging with locally varying means: Treat seismic attribute as the locally varying means.
Perform simple kriging on the residual from the locally varying means to estimate

P, (u) at each grid node u and treat it as means used to determine the conditional
distribution.

e Collocated Cokriging: Treat the seismic data as a secondary variable and apply
collocated cokriging algorithm to estimate p, (u) at each grid node u and treat it as

means used to determine the conditional distribution.

Based on above estimated local means as well as the variances, local conditional joint distribution
of facies proportions is built applying the ordinary beta distribution and realization is drawn from
this distribution. Next, realization of facies categories is drawn from the conditional cdf. The
simulated realization is then scaled up to reach the realization at the desired volumetric support.

In this example, a layer of depth 32 was extracted for the original training image. Figure 21 gives
the facies maps of slice 50 at XZ, YZ directions and slice 16 at XY direction. Figure 22 gives the
fitting of semivariogram models for the two horizontal directions: north-south and east-west
(left), and the vertical direction (right). The dot curves show the experimental semivariogram and
the dash curves give the variogram model. The red curves in the left figures represent the north-
south direction and the blue curves represent the east-west direction. Suppose there is a well at
each horizontal location determined by all pairs of coordinates (X, y) such that
{X,y:x=161,y=16].1,]=1,2,..16 }, and at each well location, the vertical distribution of

facies categories at all points separated by 4 unit were recorded. Thus we have a data of facies
categories at each grid node of size 16x16x 4.

The original training image was scaled up at the support of 1x1x16, that is at each of the
256 x 256 points in the horizontal plane facies proportions were obtained at the depth of every
16 units and the facies proportion was treated as the seismic derived facies proportion and
assigned to each grid node with the same block. In this example, the facies proportions at scale
1x1x16 was used as local varying mean and nonstationary simple kriging with local varying
means was applied to obtained the local conditional means at each grid node of small size
1x1x1. Ordinary beta distribution was then applied to build the conditional local distribution
based on the conditional local means as well as the variance of each indicator variable. In
practice, the BlockSIS.for program of CCG2005 was amended and ordinary beta
distribution was inserted after kriging estimated local facies proportion was obtained. Indicator
realization was then drawn at each of the small grid nodes (scale 1x1x1) from its conditional
local distribution. Here kriging option “2” was selected in BlockS1S. In the left columns of
Figures 23 and 24, three realizations thus simulated are shown and compared with the results
from the original BlockSIS Program (right columns). Here we can see these two results are
very closed to each other, suggesting that cdf built directly from kriging estimated facies
proportion (as is in BlockSI1S) is honored by the ordinary beta distribution based on the means
and variances.
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Conclusions

The distribution of scaled up proportions of categorical variables is complex. At a small scale,
proportion of a facies category occurs as a set of discrete values. When the scale increases, a
continuous distribution can be built. Means of the scaled up facies proportions are independent of
the scales. The variance of facies proportion will decrease as the scale increases.
Semivariograms will also decrease and flatten along with the increase in scale. The changes in
variance and variograms can be predicted with the variogram and covariance models.

Both the marginal distribution of proportion for each facies category and the joint (multivariate)
distribution of full set of facies categories depend on the means and variances of all facies
categories. and therefore depend on the scale of the volumetric support. Beta distribution and
Ordinary Beta distribution are workable in modeling the marginal and joint distribution,
respectively, of the facies proportions based on the means and variance at different support.
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Figure 15: Beta simulated CDF fit
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Figure 22: A variogram model fit
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Figure 23: Realizations simulated from ordinary beta (left) and from BlockS1S (right)
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