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A categorical variable describes the objects in a population which can be divided into a group of 
categories. The distribution of lithofacies, an example of categorical variable, is one of the most 
important factors in reservoir modeling. Many critical petrophysical properties in reservoir 
analysis and estimation, such as porosity and permeability, are highly correlated with facies type. 
A correct and precise modeling and estimation on the spatial distribution pattern of various 
facies categories over the area of interest will be significantly helpful for our modeling and 
estimation on the reservoir characteristics and performance. In the practice of facies modeling 
and analysis, we need to deal with data at different support, either point data or scaled up block 
data. The scaled up facies proportion will take different values and have different distribution 
along with the changes in block scale. In this paper, we will start from a facies category training 
image in CCG training image library to analyze the distribution at different scales. The mean, 
variance and variography of the scaled up facies proportion, as well as the shapes of the 
distribution, will be observed and analyzed at different scale. Analytical fitting of the marginal 
and joint distribution of multivariate indicator variables will be derived and its application 
multiscale indicator mapping will be discussed. 

Introduction 

A categorical variable describes the objects in a population which can be divided into a group of 
categories. One important example of categorical variable in mining, petroleum industry and 
geological study is the lithofacies. Suppose in a three-dimensional space Ω , there exist K facies 
categories 1 2, ,..., KS S S . Each single point αu  in the space is corresponding to an exact facies 
category, that is, a set of indicator variables ( , )I kαu  ( 1, 2,...,k K= ), such that ( , ) 1I kα =u  
when the facies category at αu  is kS  and ( , ) 0I kα =u  otherwise. Scaling up the facies 
categories over a neighborhood vα  of location αu , the proportion of category kS  is obtained by: 

1( , ) ( , )k v
v

p p k I k dv
v

= = ∫u u , 1, 2,...,k K= . 

The values and distributions of proportions ( , )vp ku  are volume-dependent, that is, at different 
scales of the neighborhood vα , we will get different values and distribution. Figure 1 gives a brief 
illustration on the volume-dependent distribution of a categorical variable. 
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In this paper, we will take lithofacies as an example, start from a facies category training image in 
CCG training image library and discover how distribution of a categorical variable changes with 
the volume. In part I of this paper, we give a brief review on the previous research in this area. In 
part II, we give a brief description about the data. In part III, we observe and describe the changes 
in distributions of facies proportion in three aspects: i) shape and continuity, ii) mean and 
variance, and iii) variography. In part IV, we apply a series of parametric distribution to fit the 
marginal as well as the multivariate facies proportion model and compare the results with the 
training image data. In part V, an application of the analytical fitting in multiscale facies indicator 
mapping will be discussed and Part VI will give the related sample case study.    

Scaling Laws 

For many years, researches have been carried out by many scientists and geostatisticians about 
volume dependent distribution on facies categories and proportions, particularly with effort to 
discover the scaling laws, governing the changes in mean, variance, covariance and variograms of 
facies categories and facies proportions based on a series of volumetric supports, some of the 
important works include: (1) Journel and Huijbregts (1978) develop a series of theoretical 
concepts and theorems which are widely applied and analyzing scaling laws of categorical 
variables in geostatistical study. (2) Isaaks and Srivastava (1989) gave further discussion the 
scaling laws based a practical case study. (3) Deutsch and Frykman (1999) gave a full discussion 
on semivariogram modeling at different volumetric support as well as sequential simulation based 
on multiscale data. (4) Deutsch, Tran and Xie (2001) also gave a detail discussions in direct 
sequential simulation based with multiscale well, seismic and production data.  The following 
concepts and theories are of particular importance in understanding the volume dependent 
distribution of categorical variables: 

Given two different volumetric supports v and V , three important concepts: dispersion variance 
2 ( , )v Vσ , average variogram ( , )v Vγ and mean covariance ( , )C v V are defined as (Journel and 

Huijbregts, 1978): 
2 2( , ) [ ]v Vv V E m mσ = −  

( ) ( ')

1( , ) ( ') '
V v

v V y y dy dy
Vv

γ γ= −∫ ∫
u u

 

( ) ( ')

1( , ) ( ') '
V v

C v V C y y dy dy
Vv

= −∫ ∫
u u

 

where ,v Vm m  are means at the support of scale v  and V respectively. The average variogram 
and mean covariance are in fact the mean values of, respectively, the point variograms ( )γ h  and 
covariance ( )C h , where one extremity of the distance vector h describes the domain of ( )V u  
and the other extremity independently describes the domain ( ')v u . The follow relationship is 
easy to reach (Journel and Huijbregts, 1978): 

2 2 2( , ) ( , ) ( , )v V v Vσ σ σΩ = Ω +    ( v V⊂ ⊂ Ω  ) 

2 ( , ) ( , ) ( , ) ( , ) ( , )v V C v v C V V V V v vσ γ γ= − = −  
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2 ( , ) 0σ • • = and 2( , ) ( , )γ σΩ Ω = • Ω . The symbol “• ” here is used to denote the point data. All 
these results provide the essential ideals in understanding changes in variances along with the 
volumes based a certain covariance and variogram structure. 

For scaled up variable vZ , volumetric support variogram v ( )γ h is defined as: 

{ }2
v v v( ) [ ( ) ( )]γ = −E Z Zh u u + h  where 

( )

1( ) ( )= ∫v
v

Z Z y dy
v u

u  

Journel and Huijbregts (1978) showed that scaled up semivariogram could be expressed as: 

2 ( ) 2 [ ( ), ( )] [ ( ), ( )] [ ( ), ( )]v v v v v v vγ γ γ γ= − −h u u + h u u u + h u + h  

Based on stationarity assumption, we have 

[ ( ), ( )] [ ( ), ( )] ( , )v v v v v vγ γ γ= =u u u + h u + h  

and thus 

( ) [ ( ), ( )] ( , )v v v v vγ γ γ= −h u u + h  

For a large distance h compared with the size of block v , the value of [ ( ), ( )]v vγ u u + h  will be 
much closed to the point variogram ( )γ h . In this case, ( ) ( ) ( , )γ γ γ−�v v vh h . The changes in 
variograms can therefore be predicted along with the changes in volumetric support.   

As discussed by C.V. Deutsch and P.Frykman (1999), The fitted variogram model at arbitrary 
scale v  is defined as: 

0

1
( ) ( )

nst
i i

v v v
i

C Cγ
=

= + Γ∑h h  

where ( )iΓ h represents thi  nested structure and nst the total number of nested structures. Also 
0
vC  denotes the nugget effect and i

vC  the variance contribution the thi  nested structure. The sum 
of variance contribution equals the dispersion variance, that is: 

2 0

1
( , )

nst
i

v v
i

v C Cσ
=

Ω = +∑  

with Ω  the volume of entire space of interest. The range of the volumetric supported variogram 
at a larger volume V increases as the increase in volume size ( | | | |V v− ) in each particular 
direction, that is: 

(| | | |)V va a V v= + −  

Depending on the shape of large volume V , the range may increase in some directions and stay 
the same in other directions. The purely random component, the nugget effect, decreases with an 
inverse relationship of the volume, that is: 

0 0 | |
| |V v
vC C
V

= ⋅  
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The changes (decreases) variance contribution of each nested structure along with supporting 
volumes are determined by the average variogram Γ calculated from the nested structure iΓ , that 
is: 

1 ( , , )
1 ( , , )

i
i i
V v i

V VC C
v v

−Γ
= ⋅

−Γ
a
a

 

An Example 

The data for this paper is a facies category training image over a three-dimensional space denoted 
as 256×256×128 in terms of x×y×z coordinates, or equivalently denoted as East×North×Depth. 
We have six facies categories, 0S , 1S , 2S , 3S , 4S and 5S  of interest. Figure 2 gives the slice maps 
along the planes x=50, y=50 and z=50. Figure 3 shows a group of 3-dimensional pictures about 
spatial distribution of the facies categories over the area. Figure 4 gives the maps of the vertical 
facies proportions over the horizontal area. In this training image, 0S , 1S  and 2S  are the three 
most important categories and their proportions sum to over 90% in most of the area.  The 
proportion of category 3S is 0 and categories 4S and 5S  take only very small part. 

In order to obtain a clear picture about the distribution of facies proportion over different scales, 
we divided the entire space into blocks of equal scale using a series of sizes: 2×2×2, 4×4×4, 
8×8×8, 16×16×16, 32×32×32 and 64×64×64. The proportion of each facies category was 
calculated for each block. 

Taking as an example the facies category 0S , Figure 5 gives the histogram of proportion 0p  over 
different scales. At scale of 1 2 3v l l l= × × , the facies proportions take some values among 

1 20, , ,...,1
v v

⎧ ⎫
⎨ ⎬
⎩ ⎭

, At a small scale, the facies proportions take a group of discrete values. As the 

scale increases, more and more continuous distributions occur. Also, at a small scale, an obvious 
bimodal distribution of facies proportion 0p  is observed. As the scale increases, there exists a 
trend of converging to a symmetric unimodal distribution. In Figure 6, we have the histogram of 

1p  and a similar trend is shown. 

The cumulative distribution (CDF) curves give more clear pictures about changes in distribution 
along with scales. Figure 7 shows that at scales 2×2×2 and 4×4×4, step-shape CDF curves are 
obtained. As the scale increases, the curves become more and more continuous. 

Now take a further look at the cdf of proportion kp  for facies categories kS :  Let p be its prior 
global proportion. The value and distribution of kp  depend on the scale of supporting volume v . 
For 0v = , ( , )kp I k= u , which is either 1 or 0, and [ 0] 1kP p p= = − ,  [ 1]kP p p= = . The 
cumulative distribution function (CDF): 

1    0 1
( ) [ ]

       for 1k k

p x
F x P p x

p x
− ∀ ≤ <⎧

= ≤ = ⎨ ≥⎩
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For v = ∞ , we have kp p= , and the CDF: 

0       
( ) [ ]

1       k k

x p
F x P p x

x p
∀ <⎧

= ≤ = ⎨ ∀ ≥⎩
 

Figure 8 gives an illustration on shapes of CDF’s at each of these extreme cases. As the scale 
increases between 0 and ∞ , the CDF curves shift between the above extreme cases, Figure 9 
shows the changes. 

Taking as an example the facies category 0S , the mean and standard deviation (S.d.) of proportion 

0p  are tabulated below: 

Table 1  Mean and standard deviation of 0p  at different scales  
Scale 2×2×2 4×4×4 8×8×8 16×16×16 32×32×32 64×64×64 
Mean 0.6648 0.6648 0.6648 0.6648 0.6648 0.6648 
S.d. 0.4514 0.4232 0.3898 0.3232 0.2419 0.1372 

The mean remains unchanged over different scales and the standard deviation decreases as the 
scale increases.  Given a certain scale v , where n  individual points are located in each block. 
The proportion ( , )vp kαu  of facies category kS  can be defined as: 

1

1( , ) ( , )
n

i
v

i
p k I k

nα α
=

= ∑u u     1, 2,...,k K=  

Suppose the entire space of interest is divided into m  blocks of the same size, then mean of the 
proportion kp can be obtained by : 

1 1 1 1

1 1 1 1[ ( )] ( , ) ( , )
m n m n

i i
v

i i

E p k I k I k
m n m nα α

α α= = = =

= =∑ ∑ ∑∑u u  

=
1

1 ( , )
N

i

i
I k

N=
∑ u =

1

1 ( , )
N

i

i
I k

N =
∑ u = kμ  

The mean of facies proportion over the entire area of interest is independent of the size of the 
scale and is equal to the global mean kμ .  The variance depends on the scale (as described above): 

2 2 2( , ) ( , ) ( , )V v v Vσ σ σΩ = Ω −  where v V⊂ ⊂ Ω . 

Furthermore, based on the average variogram ( , )v Vγ and covariance ( , )C v V  we have: 

2 ( , ) ( , ) ( , ) ( , ) ( , )v V C v v C V V V V v vσ γ γ= − = −  

or equivalently, the variance of the scaled up variable: 
2 2( , ) ( , ) ( , ) ( , ) ( , )v v v v vσ γ γ σ γΩ = Ω Ω − = • Ω −  

Where 2 ( , )σ • Ω is the variance of the point data over the entire volume (Ω ) of our interest. 

Based on the block v  of a certain scale, the semivariogram of facies proportions is defined as: 
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{ }2( , ) [ ( , ) ( , )]v v vk E p k p kγ = −h u u + h  

Figures 10 and 11 give the semivariograms of facies proportion 0p  and 1p  in x-direction (in 
red), y-direction (in green) and z-direction (in blue) at various scales.  As the scale increases, the 
sill of indicator semivariogram in each direction is decreasing and the plots are flattening, 
suggesting a trend of getting more continuous as the scale increase.  The changes in ranges are 
not obvious in our sample case. The changes in semivariograms of indicators and scaled up facies 
proportions are governed by the rules described above. 

Univariate Multiscale Distributions 

An Analytical description about the distribution of facies proportion is desirable and it enables 
more precise modeling and prediction. In this part of the paper, several parametric probability 
distributions and their fittings are tested. 

Consider the multinomial distribution.  Suppose there exists a prior facies proportion for kp�  for 

category kS . The variable 
1

( , )
n

i
k

i
x I kα

=

=∑ u  , the number of points where kS  occur within a 

certain block ( )v αu  satisfies the following condition:  
1

K
kk

x n
=

=∑ , where n  the entire number 

of gridding nodes in the block  and 
1

1K
kk

p
=

=∑ � .  This suggests a multinomial distribution of 

variables kX , 1, 2,...,k K= , that is 

1 2
1 1 1 2

1 2

![ ,..., ]
! !... !

Kx x x
K K K

K

np X x X x p p p
x x x

= = = ⋅⋅⋅� � �  

One important assumption for binomial distribution is that: indicator variable ( , )I kαu  and 
( , )I kβu  are independent from each other for any different locations αu  and βu . However, this 

is not true in many geological data. See an illustration of semivariogram in Figure 13, those 
points with distance less than range a  positively correlated and those with variogram values 
above sill are negative correlated. Only those with variogram value at sill might be independent. 
And the variograms at different direction may have different sills and ranges. The histograms 
from simulated multinomial realizations are shown in Figure 12. Here the parameter n  takes the 
volume of the scale, i.e., at scale of 2 2 2× ×  we assign 8n = . Obviously, they are different from 
our sample data. 

Consider the beta distribution.  The beta distribution is defined for a random variable X within a 
close interval [0,1], which has the probability density functions (pdf): 

1 1( )( ) (1 )
( ) ( )

f x x xα βα β
α β

− −Γ +
= −
Γ Γ
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where the gamma function is defined as 1

0

( ) z tz t e dt
∞

− −Γ = ∫  and ( 1) ( )z z zΓ + = Γ .  The shapes of 

the CDF curves are determined by the parameters α  and β . Based on the known expected 
values (global mean kp� ) and variances ( )v kVar p , the parameters α and β are determined as: 

(1 )[ 1]
( )

k k
k

v k

p pp
Var p

α −
= −

� ��  and 
(1 )(1 )[ 1]

( )
k k

k
v k

p pp
Var p

β −
= − −

� �� . 

Furthermore, let Ω be the entire space of interest, and 2 ()kD  be the dispersion variances of 

proportion kp based on certain supports, we have: 

2

2

(1 ) ( , )1 1
( ) ( , )

k k k

v k k

p p D
Var p D v

− • Ω
− = −

Ω
� �

=
2

2 2

( , ) 1
( , ) ( , )

k

k k

D
D D v

• Ω
−

• Ω − •
=

2

2 2

( , )
( , ) ( , )

k

k k

D v
D D v

•
• Ω − •

 =
1

1θ −
 

Where 
2

2 2

( , ) (1 )
( , ) ( , )

k k k

k k

D p p
D v D v

θ • Ω −
= =

• •
� �

.   That is:  
1

kpα
θ

=
−
�

 and 
1

1
kpβ

θ
−

=
−
�

.  The expected value 

and variances are calculated as follows: 

[ ]v kE p α
α β

=
+

,   2[ ]
( ) ( 1)v kVar p αβ
α β α β

=
+ + +

 

Figure 14 gives comparison between the sample distributions (left) and simulated beta 
distributions (right) for 0p  at various scales while Figure 15 gives the overlapped curves of 
sample CDF and beta simulated CDF for 0p  and 1p .  Some observations: 

• The beta simulated realizations give good reproductions of the marginal sample 
distributions at most of the scales and the facies categories. 

• The Frequencies of extreme proportion values (around 0 and 1) are partially over-
estimated, making the simulated CDF curves over-smooth at both ends. 

• When ( ) 0v kVar p → , both α , β →∞ , the distribution goes to normal. Figure 16 gives 
the simulated realizations for 0p at α and β  values based on some very variance. We see 
that it is a normal distribution with mean 0p� =0.6648 

• Some other training images were tested and similar results were obtained for categories 
with prior global proportions values not very close to 0 or 1. For those categories with 
extreme prior proportions, e.g., greater than 0.99 or less than 0.01, the beta simulated 
realization did not reproduced the sample distributions. Figure 17, gives some examples. 

If we are to proceed with multiscale facies modeling we require a multivariate distribution and 
not simply a univariate distribution. 
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Dirichlet Distribution for Multivariate Multiscale Distributions 

Generally, for K facies categories 0S , 1S ,…, 1KS −  in the area of interest, the proportions 
( 0p , 1p ,…, 1Kp − ) will fall on a hyperplane determined by 0 1 1... 1Kp p p −+ + + = . 

In the previous discussion, we realize that a beta distribution will be a workable parametric 
distribution in fitting the marginal distribution for each facies proportion. A generalized form of 
beta distribution, the Dirichlet Distribution, is therefore considered to fit the joint distribution of 

0p , 1p ,…, 1Kp −  

A Dirichlet distribution (Johnson and Kotz, 2000), is defined for n  random variables 

1 2, ,..., nx x x that have the joint probability density function (joint-pdf) given as: 

11

1
1

( )
( ; )

( )
i

n
n

ii
in

iii

f xα
α

α
−=

=
=

Γ
=

Γ
∑ ∏

∏
x α  

where 1 2, ,..., [0,1]nx x x ∈  and  
1

1
n

i
i

x
=

=∑ . And 1 2, ,..., nα α α  are shape parameters.  The 

expected value and variance of each variable are given as: 

1

[ ] i
i n

ii

E x α
α

=

=
∑

,  and  1

2
1 1

[ ]
[ ]

[ ] [ 1]

n
i j ij

i n n
i ii i

Var x
α α α

α α
=

= =

−
=

+

∑
∑ ∑

 

It can be shown that the marginal distribution of ix  follows a beta distribution with ( ,i iα β ). 

Taking into consideration the constraint 
1

1
n

i
i

x
=

=∑ , only 1n − variables are free and 

1

1

1
n

n i
i

x x
−

=

= −∑  . The the joint-pdf for Dirichlet distribution can then be expressed as: 

1 1
1 11

1 2 1
11

1

( )
( , ,..., ; ) [ ] (1 )

( )
i n

n
n n

ii
n i in

iiii

f x x x x xα αα

α

− −
− −=

−
==

=

Γ
= ⋅ −

Γ
∑ ∑∏

∏
α  

Now come back to facies proportion 0p , 1p ,…, 1Kp − , the joint pdf can then be fitted as: 

1
1

10
0 1 1 1

0
0

( )
( , ,..., ; )

( )
k

K
K

kk
K kK

kkk

f p p p pαα

α

−
−

−=
− −

=
=

Γ
=

Γ
∑ ∏

∏
α  

Or, taking into consideration the constraint 
1

0
1

K

k
k

p
−

=

=∑ , only 1K − variables are free and 

2

1
0

1
K

K k
k

p p
−

−
=

= −∑  . The the joint-pdf for Dirichlet distribution can then be expressed as: 



 203-9 

1

1
2 2

1 10
0 1 2 1

00
0

( )
( , ,..., ; ) [ ] [1 ]

( )
k K

K
K K

kk
K k kK

kkkk

f p p p p pα αα

α
−

−
− −

− −=
− −

==
=

Γ
= ⋅ −

Γ
∑ ∑∏

∏
α  

In case of only two facies categories, it is simplified to a standard beta distribution and 
parameters α andβ are uniquely determined by mean and variance of any one of the two facies 
proportions. In cases where more than two facies categories occur, the following conditions 
should all be satisfied: 

1

[ ] i
i n

ii

E x α
α

=

=
∑

,  and  1

2
1 1

[ ]
[ ]

[ ] [ 1]

n
i j ij

i n n
i ii i

Var x
α α α

α α
=

= =

−
=

+

∑
∑ ∑

, 1, 2,...,i n=  

Here we have n  variables, 1 2, ,..., nα α α , to determined, satisfying 2n  constraints.  One possible 
way might be focusing on the expectation values and use only the variance of the most important 
category. From the mean constraints, we reach: 

1
[ ] [ ]n

i i j ij
E x E xα α υ

=
= ⋅ = ⋅∑  for all 1, 2,...,i n=  

Here we denote the sum of α ’s asυ . Substitute this into the constraint of [ ]dVar x  where dx be 
the selected important category. Then we have: 

[ ] (1 [ ])
[ ]

d d

d

E x E x
Var x

υ ⋅ −
=    and   [ ]i iE xα υ= ⋅    for all 1, 2,...,i n= . 

A large number of realizations were simulated, using the variance for facies category 0S  when 
fitting the parameters.  For facies proportion 0p , we got a simulated CDF very close to that as in 
beta simulation at each scale.  Figure 18 gives some cross plots of joint CDF from the data versus 
the joint CDF from the Dirichlet simulated realizations for other facies categories and the 
following was observed in the simulation test: 

• The shapes of the marginal distributions were approximately reproduced, particularly for 
the case of smaller scales. 

• The mean of proportion of each facies category was reproduced. 

• In the output distributions, the variances for facies proportion 0p were reproduced at 
different scales of volumetric support, while the variances for other facies categories 
were over estimated to different extents. For 1p  and 2p , the estimated variances were 
close to the real levels, but for 4p and 5p , the variances were strongly over-estimated 
and the shapes of distributions were changed particularly at a larger scale of support. 

• In Figure 19, the joint cdf was approximately reproduced by Dirichlet distribution at 
small scale, but not at the larger scale. 
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Ordinary Beta for Multivariate Multiscale Distributions 

One possible solution to problem of variances in Dirichlet distrbution lies in a generalized beta 
distribution introduced by Mauldon, 1959.  Mauldon defined as follows an integral 
transformation ( βφ ) of n  random variables nxxx ,...,, 21  with joint CDF ),...,,( 21 nxxxF : 

[ ] ∫ ∫ ∑∫∑
∞

∞−

∞

∞−

−
=

∞

∞−

−
=

−=−= ),...,()(...)( 111 n
n

j jj
n

j jj xxdFxatxatE ββ
βφ  

and defined nxxx ,...,, 21  as forming a −n dimensional beta distribution when there exist 
parameters ijc  and iβ  ( ri ,...,2,1= ) such that 

βφ =∏ ∑
=

−
=

−
r

i

n

j ijj
icat

1
1

)( β  where ∑ =
=

r

i i1
ββ  

The ijc parameters form a coordinate matrix. Mauldon showed that when the coordinate matrix is 

a unit matrix (with all ijc =1), and nxxx ,...,, 21  fall within (0,1) and 1 2 ... 1nx x x+ + + = , the joint 
pdf has the form: 

∏∏ =

−

Γ
Γ

=
n

j j
i

n
jxxxf

1

1
1 )(

)(),...( β

β
β

 

Mauldon called it basic beta distribution. Note it is in fact the Dirichlet distribution as we 
discussed above. Mauldon also showed that any −n dimensional beta distributions can be 
obtained by M=y x  from basic beta distributed variables nxxx ,...,, 21  through matrix M . This 
is named as Ordinary Beta distribution by Mauldon. 

The result from Mauldon is helpful in solving our problem. Let 1 2, ,..., Kp p p be the K  facies 
proportion we are modeling, the joint distribution can be modeled by M=p x  where x  forms a 
Dirichlet distribution with: 

β
βi

ixE =][  and 
)1(
)(][ 2 +

−
=

ββ
βββ ii

ixVar  

and 

[ ] [ ]E M E= ⋅p x , [ ] [ ] TCOV M COV M= ⋅ ⋅p x  

where [ ]COV x  denotes the covariance matrix of variable vector x and TM  the transpose of 
matrix M . Solving the above equation systems we would be able find the matrix M  and 
parameters iβ which make 1,..., Kp p honors population means, variances and covariances.  
Specifically, applying a diagonal matrix: 

11

22

0 0
0 0

0 0 KK

a
a

M

a

⎛ ⎞
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎝ ⎠

…
…

# # % #
"
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And x =( 1 2, ,..., Kx x x ) form a K − dimensional basic Beta (Dirichlet) distribution with 
parameters iβ  ( 1, 2,...,i K= ), we will reach the following system: 

2

1 2

[ ]

( )[ ]                    1, 2,...,
( 1)

...

ii i
i

i i
i ii

K

aE p

Var p a i K

β
β

β β β
β β

β β β β

⎧ =⎪
⎪

−⎪ = ⋅ =⎨ +⎪
⎪ = + + +
⎪
⎩

 

Or, equivalently: 
2

1 2

[ ] [ ] ( [ ])
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...

i i i
ii

i

i
i

ii

K

Var p Var p E pa
E p

E p i K
a

β

ββ

β β β β

⎧ ⋅ + +
=⎪

⎪
⎪ ⋅⎪ =⎨
⎪
⎪
⎪

= + + +⎪⎩

 

Solve this system for iia  and iβ  and thus reach distribution M=p x  which will honor both the 
means and the variances.  One problem is that the values of 1 2, ,..., Kp p p are not guaranteed to 
fall within [0,1] or sum to one. This problem can be solved by: 

*

1

i
i K

jj

pp
p

=

=
∑

   1, 2,...,i K=  

Figure 20 gives cross plots of the data joint CDF versus the simulated joint CDF. Here we can see 
the joint CDF is pretty well reproduced at small scale and also reproduced at large scale. Several 
other training images were tested and the similar results were obtained. If a full matrix M is 
adopted, the covariance can also be honored and a better fit can be expected. But that will require  
solving a very complicated equation system. 

One major problem that might occurs in ordinary beta distribution fitting lies in the roots of 
β , iβ ’s or iia . When dealing with system as discussed above, we will finally come to equations 

of  thK order polynomials. When in any group of solution, values for β , iβ ’s or iia  are not all 
positive, there will be risk when we draw the realization. It might also be possible that no real 
root exists and thus we can not go on. Fortunately, our observations suggest that all the non-real 
roots and most of the non-positive roots occur in those extreme situations where the expected 
values [ ]kE p  for certain k ’s in 1,2,…, K are greater than 0.99 or less than 0.01. Note that for all 

0 1kp≤ ≤ , we have: 2 2 2[ ] [ ] ( [ ]) [ ] ( [ ]) [ ]k k k k k kVar p E p E p E p E p E p= − ≤ − ≤ . 910 pairs of 
uniformly distributed random vectors ( u , v ), 5-dimentional or 4-dimentional, were drawn such 
that 0.01 ( ) 0.99i< <u  and  0.0005 ( ) ( )i i< <v u , treated respectively as [ ]E p and [ ]Var p  and 
did the test. Real roots occurred in all the cases and positive roots occurred in more than 97.5% of 
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the cases. In case all real roots were negative, we could slightly reduce the required variances and 
obtained positive roots. Based on this observation, when we build the conditional distribution, we 
can assign values 0.99 and 0.01 respectively, to [ ]kE p  value when extreme value greater than 
0.99 or less than 0.01 occurs. The result will be very close to the original one. And the problem of 
non-positive roots can be solved by slightly reducing the maximum of the target variances. 

Joint PDF for Ordinary Beta Distribution 

The parametric joint pdf for ordinary beta distribution can be derived applying Jacobian 
transformation rule. In the transformation M=p x , where x  forms a Dirichlet distribution with 
joint pdf: 

1
1 1

( )( ,... )
( )

jK
K jj

i

f x x xββ
β

−

=

Γ
=

Γ ∏∏x  

and M an invertible matrix with inverse 1M − =[ ]ijb , , 1, 2,...,i j K=  we have 

1M −=x p  

or equivalently ( )ix p =
1

K
ij jj

b p
=∑  ( , 1, 2,...,i j K= ). The Jacobian matrix for such 

transformation can be expressed as: 

J =[ ]ijs , where 
( )i

ij
j

xs
p

∂
=

∂
p

= ijb   ( 1, 2,...,j K= ) 

That is: J = 1M − . Denote the determinant of the Jacobian matrix J  as det( J ) and its absolute 
value as | det( ) |J , applying Jacobian transformation rule, we obtain joint pdf for p  as: 

1 1( ,... ) [ ( ),... ( )] | det( ) |K Kf p p f x x J= ⋅p x p p = 11
11
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jK K
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In case we use diagonal matrix for M : 
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where, as previously discussed, iia >0  for all 1, 2,...,i K= , the joint pdf fp  can be simplified as: 

1( ,..., )Kf p pp =
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and joint CDF is derived as: 
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1( ,..., )KF p pp = 1
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An Application 

Two important sources of data we usually deal with include well data and seismic data. The well 
data provide accurate measurements about the vertical distribution of lithofacies, as well as 
porosity, permeability and other critical properties in reservoir modeling. However, due to the 
high costs and various other reasons, the number of wells are usually too limit to provide enough 
information to support an accurate appraisal about a reservoir. In contrast, the seismic data are 
generally more abundant, though less precise. Usually the seismic data has less vertical resolution 
than the well data and approximately reflect lithofacies proportions and average porosity at a 
certain volumetric support. On the other hand, various other sources, such as historical production 
record, scientific research discovery, and so on, will also provide information at different scale of 
volumetric support about lithofacies and other geological properties. Integrating data of different 
scale has always been a critical issues. 

Building 3-D realization of lithofacies codes, porosity at a sufficiently detailed resolution to 
provide a reliable basis for well planning, volumetric calculations and meaningful effective flow 
properties is a key problem in reservoir modeling (Deutsch, Srinivasan 1996). Two basic 
categories of algorithms are used in mapping the lithofacies, porosity and other variables: 1) 
Estimation algorithms, or, Interpolation algorithms, as named by A.G.Journel and W.Xu (1992), 
which yield a unique response, best in some sense. Kriging of different types form a critical 
family in this category. 2) Simulation, or stochastic imaging, [A.G.Journel and W.Xu (1992)], 
which provide multiple possible realizations of the variable of interest. 

Many types of kriging algorithms can be used to map the lithofacies based on well data, seismic 
data and various other data of different scale support, such as kriging with external drift, kriging 
with local varying mean, block kriging and collocated cokriging. Simulation is closely related to 
the kriging algorithms. Usually, a certain type of kriging (or cokriging) approach is used to build 
the conditional distribution of a variable at a certain location based on the known data, and 
realization is then drawn from the conditional distribution. 

Based on the discussion in part IV in this paper, we note that the multivariate distribution of 
facies proportions ( 1 2, ,..., Kp p p ) for K facies categories ( 1 2, ,..., KS S S ) can be estimated by an 
ordinary beta distribution determined by the mean and variance of each variable kp  
( 1, 2,...,k K= ).  This result leads to another option of mapping the lithofacies categories and 
proportions based on the well data, seismic data and other data of different supporting scales. 
Suppose in a 3-dimensional space with volume Ω , we have 1n  wells located at αu , (α =1,2,…, 

1n ) and seismic data is available all over the area we are interested in and gives the block average 
at a support of 0v . Suppose as we want to build a 3-D realization of facies proportions 

1 2, ,..., Kp p p  for the K facies categories ( 1 2, ,..., KS S S ) over the area and at the volumetric 
support of v . 
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Applying the Ordinary Beta distribution, our problem is simplified to estimating the local mean 
and variance of facies proportion kp  ( 1, 2,...,k K= ) at each location (u ) based on the sample 
well data and seismic attributes. The following approaches can be used: 

• Kriging with locally varying means: Treat seismic attribute as the locally varying means. 
Perform simple kriging on the residual from the locally varying means to estimate 

kp ( u ) at each grid node u  and treat it as means used to determine the conditional 
distribution. 

• Collocated Cokriging: Treat the seismic data as a secondary variable and apply 
collocated cokriging algorithm to estimate kp ( u ) at each grid node u  and treat it as 
means used to determine the conditional distribution. 

Based on above estimated local means as well as the variances, local conditional joint distribution 
of facies proportions is built applying the ordinary beta distribution and realization is drawn from 
this distribution. Next, realization of facies categories is drawn from the conditional cdf. The 
simulated realization is then scaled up to reach the realization at the desired volumetric support. 

In this example, a layer of depth 32 was extracted for the original training image. Figure 21 gives 
the facies maps of slice 50 at XZ, YZ directions and slice 16 at XY direction. Figure 22 gives the 
fitting of semivariogram models for the two horizontal directions: north-south and east-west 
(left), and the vertical direction (right). The dot curves show the experimental semivariogram and 
the dash curves give the variogram model. The red curves in the left figures represent the north-
south direction and the blue curves represent the east-west direction. Suppose there is a well at 
each horizontal location determined by all pairs of coordinates (x, y) such that 
{ , : 16 , 16 . , 1, 2,...16x y x i y j i j= = = }, and at each well location, the vertical distribution of 
facies categories at all points separated by 4 unit were recorded. Thus we have a data of facies 
categories at each grid node of size 16 16 4× × . 

The original training image was scaled up at the support of 1 1 16× × , that is at each of the 
256 256×  points in the horizontal plane facies proportions were obtained at the depth of every 
16 units and the facies proportion was treated as the seismic derived facies proportion and 
assigned to each grid node with the same block.  In this example, the facies proportions at scale 
1 1 16× ×  was used as local varying mean and nonstationary simple kriging with local varying 
means was applied to obtained the local conditional means at each grid node of small size 
1 1 1× × . Ordinary beta distribution was then applied to build the conditional local distribution 
based on the conditional local means as well as the variance of each indicator variable. In 
practice, the BlockSIS.for program of CCG2005 was amended and ordinary  beta 
distribution was inserted after kriging estimated local facies proportion was obtained. Indicator 
realization was then drawn at each of the small grid nodes (scale 1 1 1× × ) from its conditional 
local distribution. Here kriging option “2” was selected in BlockSIS.  In the left columns of 
Figures 23 and 24, three realizations thus simulated are shown and compared with the results 
from the original BlockSIS Program (right columns). Here we can see these two results are 
very closed to each other, suggesting that cdf built directly from kriging estimated facies 
proportion (as is in BlockSIS) is honored by the ordinary beta distribution based on the means 
and variances. 
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Conclusions 

The distribution of scaled up proportions of categorical variables is complex.  At a small scale, 
proportion of a facies category occurs as a set of discrete values.  When the scale increases, a 
continuous distribution can be built.  Means of the scaled up facies proportions are independent of 
the scales.  The variance of facies proportion will decrease as the scale increases.  
Semivariograms will also decrease and flatten along with the increase in scale.  The changes in 
variance and variograms can be predicted with the variogram and covariance models. 

Both the marginal distribution of proportion for each facies category and the joint (multivariate) 
distribution of full set of facies categories depend on the means and variances of all facies 
categories. and therefore depend on the scale of the volumetric support. Beta distribution and 
Ordinary Beta distribution are workable in modeling the marginal and joint distribution, 
respectively, of the facies proportions based on the means and variance at different support. 
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Figure 1: Multiscale Facies Modeling 
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Figure 2: Slice Maps of Facies Categories 

 

     
Figure 3: 3-Dimensional Pictures of Facies Categories 
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Figure 4: Facies Proportion Map 
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Figure 5: Facies Proportion of S0 over Different Scales 
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Figure 6: Facies Proportion of S1 over Different Scales 
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Figure 7: Cumulative Distribution of Proportion of S0 over Different Scales 

 

 

Figure 8: CDF of kp  for cases 0v =  ( in red ) and v = ∞ ( in black ) 
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Figure 9:  

 

   

Figure 10: Semivariograms of Facies Proportion for 0S  at Various Scales. (X-direction: in red. 
Y-direction: in green. Z-direction: in blue. Unit lag distance: the distance between the centers of 
two adjacent blocks ). 

 

   
Figure 11: Semivariograms of Facies Proportion for 1S  at Various Scales. (X-direction: in red. 
Y-direction: in green. Z-direction: in blue. Unit lag distance: the distance between the centers of 
two adjacent blocks ). 
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Figure 12: Binomial simulation ( kp� =0.665 ) 
 

 
Figure 13: Semivariogram 
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Figure 14: Beta simulated distributions. Histograms from data (left) compaired with the 
simulated histograms (right). 
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Figure 15: Beta simulated CDF fit 
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Figure 16: Beta simulated distribution for p0 at a very small variance 

 

    
Figure 17: Figure 17  Beta simulated fits with prior global proportion 0.0047. The CDF’s of 
simulated realizations lies below the CDF’s of the data 

 

   
Figure 18: Dirichlet simulated realizations 
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Figure 19: cross plots of sample jointCDF vs simulated jointCDF 

 

    

    
Figure 20: cross plots of sample jointCDF vs simulated jointCDF 
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Figure 21: Facies maps  XY: slice 16  XZ, YZ: slice 100 

    
Figure 22: A variogram model fit  

 

  

 

 

 

 
Figure 23: Realizations simulated from ordinary beta (left) and from BlockSIS (right) 
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Figure 24: Realizations simulated from ordinary beta (left) and from BlockSIS (right) 


