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Heterogeneity in a hydrocarbon reservoir generally refers to a nonuniform, non-linear spatial 
distribution of rock properties. Simulation of flow in three dimensional reservoirs involves 
complex geometry and geology; the use of unstructured grids permits adequate resolution of 
important features such as fault, channels and deviated wells. Within an unstructured grid we 
may have multiple facies and/or subsequences; this can introduce problems related to searching 
for relevant data in kriging and accounting for connectivity of facies within and between adjacent 
blocks. This note documents one approach to account for geological heterogeneity within and 
between unstructured grid blocks. Conventional indicator kriging and simulation methods are 
used to simulate connected blocks one at a time, with successively increased conditioning to 
previously simulated locations. Facies connectivity is captured by this method and the result 
gives an insight for further reservoir characterization studies such as the unstructured grid 
blocks. 

Introduction 

The main objective in describing a reservoir is the characterization of reservoir heterogeneities 
that influence the flow of fluids through the reservoir. Geostatistical methods are applied in order 
to integrate geological, geophysical, and petrophysical information to make inferences about 
static reservoir properties at unsampled locations. These reservoir models can then be used in a 
variety of ways, such as serving as a common database for oil in place calculation, flow 
simulation, well placement optimization, and visualization purposes (Seifert et. al., 1999).  

Unstructured grids are becoming more commonly used in flow simulation in order to resolve 
complex features. Today’s reservoir simulators are capable of handling irregular grids such as 
corner point geometry, hybrid grids and curvilinear grids (Figure 1). Using these kinds of grid 
will almost certainly introduce different block sizes in the field of study. While local grid 
refinements near wells and/or fault boundaries provide the required level of resolution for these 
static reservoir properties, there is an inherent heterogeneity within coarse scale blocks that can 
be overly homogenized and possibly affect the dynamic response of the reservoir. There is a need 
to capture the heterogeneity of irregularly-shaped multiscale blocks, particularly if coarse scale 
blocks encompass multiple facies or even multiple sequences. 

Conventional reservoir modeling permits heterogeneity characterization of different aspects of the 
reservoir and involves several modeling tasks.  It is common to begin by defining the key 
structural features, such as relevant horizons and fault block(s).  Geological facies distributions 
between horizons and within fault blocks are then considered.  Finally, petrophysical properties, 
such as porosity and permeability, are then characterized within these defined facies.  This is a 
fairly standard procedure, and assumes that staitionarity of the petrophysical properties is valid 
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within each facies.  Geostatistics permits heterogeneity modelin`g within a stationary domain and 
since the facies model fundamentally defines these stationary zones, we can consider that the 
petrophysical distribution within a facies is heterogeneously homogeneous.  As a result, the facies 
model which can also be constructed via geostatistics captures a higher (macroscopic) level of 
heterogeneity (Caers, 2005). 

The objective of this paper is to characterize facies connectivity within and between coarse scale 
blocks.  We begin with a brief review of some facies modeling methods, and then propose a 
methodology that is based on indicator approaches.  A small example illustrates the results of 
applying this approach. 

 
Figure 1. Example of locally refined grid.  Grids are refined around wells and faults where 
pressure and saturation changes are more important.  (Source: Castellini, 2001) 

Background 

The reservoir architecture is represented by heterogeneity modeling techniques. Three main 
approaches are typical: cell-based modeling, object-based modeling and most recently, multiple 
point geostatistics using training images.  Object-based models are suitable when geobody 
geometries are well understood and can easily be specified using simple objects.  It is primarily a 
Boolean simulation wherein geo-objects are stochastically populated within the model; the 
presence of many conditioning wells can be problematic and remains a long-standing challenge to 
these approaches.  Multiple point geostatistics has received much attention recently and relies on 
extracting multiple point statistics derived from training images.  This can yield a realistic 
geology model, but relies heavily on the training image thus representativity of the image is an 
important issue.  Of the three primary approaches to facies modeling, cell based models remain 
the most common in practice. 

In cell-based modeling, the reservoir volume is commonly discretized into a regular Cartesian 
grid and relies on the two-point variogram statistic to capture structural correlations. Indicator and 
truncated Gaussian methods are common in this class of techniques; the former indicator 
approach is more common in practice.  Indicators are widely used in modeling categorical 
variables because the distribution of uncertainty can be estimated directly (Journel, 1983). The 
categorical facies data are transformed into a binary variable via the following transform: 
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where k=1,…,K categories, and uα represents a location in domain A. The mean indicator and 
variance are then defined as: 
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where kp  is proportion of Facies k within the domain. 

Inference using indicators can be performed in one of two modes: estimation and simulation.  In 
the former case, indicator kriging (IK) yields the estimated probability of each threshold at 
unsampled locations: 
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where λα is the weight assigned to the indicator value at location uα.  In the latter case, sequential 
indicator simulation (SIS) permits global and local uncertainty to be assessed on the reservoir 
model (Seifert et. al., 1999).  Note that the estimation with indicator results in a continuous 
attribute (a probability), while SIS results in realizations that consist of categorical values (that 
represent a specific facies). 

Problem Setting 

Suppose that a large reservoir model is to be constructed using an unstructured grid.  A fine grid 
is needed in the parts of the reservoir where saturation and pressure changes rapidly such as near 
wells and faults. However, there is no need to discretize the whole reservoir with a very fine grid 
and some parts can be discretized by coarser grids (Figure 1).  This may help to reduce the 
computational storage, effort and time in flow simulation. 

Geologic heterogeneity is not an issue for the fine scale blocks since a sufficiently small block 
may be adequately characterized by a single facies.  As the block scale becomes progressively 
larger away from wells, these coarser blocks may consist of multiple facies and/or geologic 
sequences.  A geologic description of these coarser blocks must inherently require statements 
regarding constituent facies proportions; this information, however, is insufficient to capture the 
facies continuity within and between these coarse blocks.  This heterogeneity is important 
because they may have an impact in the hydrocarbon flow between wells and/or across faults. 

Proposed Methodology 

Capturing the heterogeneity in coarse blocks far away from wells necessarily implies that no well 
information is available about the geology for that localized region.  As such, the following 
methodology is proposed:  



 205-4 

1) Perform indicator kriging on the entire field conditioning to the facies data from wells.  
This yields the local facies proportion at each grid block, and forms the only information 
available for coarse grid blocks. 

2) Refine the geological heterogeneity for a chosen coarse grid block (far from wells) via: 

a. Choose an appropriate fine scale resolution for this grid block. 

b. Perform sequential indicator simulation conditioned on the well data and the 
local facies proportions from Step (1) above for this refined grid. 

c. Add this locally refined grid simulation to the database and proceed to the next 
coarse block chosen for selective refinement.  Refined simulation of all 
subsequent coarse blocks will be conditioned on (i) original well data, (ii) local 
facies proportion for that coarse block, and (iii) any nearby previously refined 
coarse blocks. 

The following section illustrates the results of this algorithm via a small synthetic example.  This 
example considers a simple Cartesian grid for initial testing of the algorithm; a future extension 
of this application requires the consideration of an unstructured grid. 

Example 

Consider a field whose extents are 2000 m in Easting, 2000 m in Northing and 15m in vertical 
resolution (Figure 4). Geological survey shows that there are three different sequences in this 
field: S1, S2 and S3. Both sequences S2 and S3 are composed of two different facies (See Figure 
2).  

 
Figure 2. Schematic illustrations of three different sequences consisting of five facies exist in the 
field of study and their corresponding codes. 

Based on this schematic illustration, a reference model was generated using SIS on the field at a 
fine resolution with the following variograms for the five different facies: 
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where the γi(h) is the variogram model corresponding to the ith facies, and ah_max is the range in 
the maximum continuity direction (in this case, north), and ah_min is the range in the minimum 
continuity direction (east), and avert is the range in the vertical direction..  For image cleaning 
purposes, the resulting model was then post-processed using a maximum a-posteriori selection 
(maps) program (Deutsch, 1998). Figure 3 shows 3-D view of reference model. 

 

 
Figure 3. 3-D reference model generated by SISIM. 

Suppose that six wells are sampled and the declustered facies proportions are recorded. Figure 4 
shows the well locations and the declustered histogram of facies.  Using these six wells and the 
declustered proportions, indicator kriging is performed on the full field for a grid size of 10m in 
easting, 25m in northing and 15m in elevation (for a total of 400000 blocks). 
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Figure 4. Location of sample wells in the field and (left) and declustered histogram of facies 
proportions from well data (right). 

For the purpose of a refined geological heterogeneity description, five blocks at a northing-
elevation cross section is arbitrarily chosen at an Easting of 1000m and a Northing between 400 
and 525m.  This is sufficiently far away from the available wells and little to no local information 
is available. Figure 5 shows the cross section of the reference model at X=1000 m. 

 

 
Figure 5. Cross section at easting of 750m showing the five arbitrarily chosen blocks for local 
refinement of the geology model.  

As we proceed with applying indicator simulation for local refinement, two issues are considered 
for detailed analysis: local grid discretization and the simulation order of the five blocks.  For the 
first issue of grid discretization, we consider simulation of only the first block centered at a 
northing of 1012.5m.  Three different grids are examined (see Figure 6):  50 x 30 cells (for a cell 
size of 0.50m x 0.50m), 50 x 60 cells (for a cell size of 0.50m x 0.25m), and 100 x 60 cells (for to 
a cell size of 0.25m x 0.25m).  Of the three examined grids, the result with 50 x 60 cells appears 
to show relatively good agreement with the reference model and is a good compromise between 
the coarse results of the 50 x 30 cell grid and the noise from the 100 x 60 cell grid. Figure 6 
shows simulated and reference block 1 with three different grid sizes.  
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Figure 6. Reference (top) and simulated models of Block 1 (bottom row) at different grid 
discretizations. 

The adjacent block (block 2) is simulated using well data plus simulated values from the previous 
block. Five connected blocks are simulated sequentially with the same method. 

In order to have conditioning data from both sides (not only from left side) another simulation 
sequences is examined. Block 1, 3 and 5 are simulated with the same method and after that block 
2 and 4 are simulated using left and right hand side blocks (block 1 and 3 for block 2 simulation 
and block 3 and 5 for block 4 simulation) plus the well data. Figure 7 shows the results for five 
connected blocks with two different simulation sequences. Facies ordering is better reproduced 
by the first simulation sequence (Left to right) and as we expected category 1 (S1-Sand) and 5 
(S3-Shale) lie at the top and bottom with high connectivity. 

 
Figure 7. Reference model (top) and five blocks simulated with order from left to right (middle 
row) and order of 1,3,5,2,4 (bottom row). 
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Discussion 

Modeling the geological heterogeneity and facies is important in reservoir characterization. In the 
method discussed in this paper, depending on the grid discretization and sequences used in 
simulation the number of conditioning data increase and this requires more computational time. 
However this idea is considered for use with large (or coarse scale) blocks and there is no need to 
implement it on small grid blocks where facies connectivity is not so important.  We may 
consider defining a threshold to determine which grid block(s) should be simulated with this 
method. Grids with volume greater than the defined threshold are considered for simulation. 

Choosing block simulation order is another factor that affects the result. A random order was not 
examined; however, sequential simulation methods often make use of a random path to avoid 
artifacts in simulation results.  This should be considered for future research. 

Facies ordering may be more important in some special cases. Indicator simulation was 
considered for this study; however, the use of truncated (pluri)Gaussian simulation should 
improve results where a clear facies ordering is present. 

The geological heterogeneity modeled from this study can feed into a simulation of permeability 
or the calculation of a permeability tensor in regular or unstructured grid (See paper 206 in this 
report). 
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