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Heterogeneity in a hydrocarbon reservoir is captured by the rock permeability. This 
heterogeneity exists in reservoir both in fine scale and large scale. The fine scale variability is 
commonly modeled with geostatistical methods. These models can be as large as a hundred 
million cells; it is inefficient to feed them into a flow simulator due to the computational cost and 
time. Upscaling techniques are applied to average the fine scale permeability up into the final 
flow simulation grids. In cases where unstructured grids are used, full permeability tensors arise 
instead of a diagonal tensor. The focus of this work is on development of a method to 
characterize the full permeability tensor for an unstructured grid block using fine scale 
heterogeneity information. A prototype program called ptensor is developed, based on the 
flowsim program, to calculate a full tensor permeability on a polygonal grid block. 

Introduction 

Geostatistical realizations provide models of reservoir properties for millions of grid blocks to 
better capture heterogeneity based on multiscale information. Feeding these fine scale models to 
flow simulation is impractical due to the computational inefficiency. Upscaling techniques are 
often considered to average the fine scale models to coarser scale models.  A simple averaging is 
sufficiently and reasonable for variables that average linearly; however, in the case of 
permeability which does not average linearly, a simple arithmetic averaging is inadequate. 

Commonly unstructured grids are used in order to better capture the flow response near complex 
reservoir features such as faults and wells. Irregularly shaped grids do not conform to the 
underlying fine scale model and this irregularity changes the assumption of simulators which 
consider that the pressure equation has a diagonal permeability tensor. Flow Simulation on 
unstructured grids requires directional permeability or full tensor permeability to be specified. 
Recent modifications to flow simulators permit the solution of the flow equations using a full 
tensor. 

This paper presents a new method to calculate the full permeability tensor in an unstructured grid 
based on a numerical finite difference solution of the steady state flow equations in presence of a 
fine scale heterogeneous model of permeability. The method presented here is for a 2-D 
polygonal shaped grid but can be easily generalized for any grid shape in 3-D. 

Background 

Permeability upscaling refers to a procedure in which the underlying fine scale permeability is 
averaged up to return the effective permeability of a larger domain. There are several upscaling 
techniques available. In an ideal case, the equivalent permeability for a group of fine grid blocks 
serially arranged has been analytically proven to be equal to their harmonic average. If the blocks 
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are arranged in parallel to the flow direction, the equivalent permeability is equal to their 
arithmetic average (see Figure 1) (Deutsch, 1987; Kelkar and Perez, 2002). Here the assumption 
is that the permeability tensor is a scalar (keff). 

 
 
Figure 1. Upscaled effective permeability for simple cases of series (top) and parallel (bottom) 
layers.  Redrawn from Kelkar and Perez (2002). 

Gomez-Hernandez and Wen (1994) showed that a simple arithmetic averaging is valid as long as 
the spatial variability of permeability does not display strong anisotropy.  

For more complex cases with increasing heterogeneity, flow-based upscaling techniques yield 
more accurate results.  In this type of upscaling the flow equation is solved for pressure and the 
results are used to obtain the block permeability. Warren and Price (1961) applied this technique 
for regular coarse grids to obtain the diagonal tensor. Usually cases that involve the use of 
irregular grid or heterogeneous permeability field at fine scale require calculating the full 
permeability tensor. White and Horne (1987) were the first to propose a technique to determine 
full non-diagonal block permeability tensors. The resulting block permeability tensors are not 
always symmetric or positive-definite. Choosing appropriate boundary conditions is very 
important in flow-based upscaling. Durlofsky’s (1991) idea of periodic boundary returns 
symmetric and positive definite full permeability tensor in medium with periodic condition 
(repetitive geological structures). 

Almost all of the above mentioned techniques are applied on regular grids. Tran (1995) proposed 
a method in which the pressure is calculated in the smallest rectangle that includes the irregular 
block. However, the calculated permeability is diagonal. He (2000) applied Durlofsky’s periodic 
boundary condition and solved the flow equations with a finite element method for general 
quadrilateral grids. 

Methodology 

Flow based upscaling technique is used to calculate effective permeability of coarse block. 
Consider single rectangular block imposed on a fine scale model (Figure 2). The idea here is to 
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calculate the pressure at fine scale with specific boundary conditions applied at the boundary of 
the coarse block and then use the solution to calculate the full permeability tensor for that coarse 
block. In order to calculate pressure at fine scale in this 2D case, the 2-D single phase steady state 
flow equation with the assumption of incompressible fluid and rock is considered: 
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where P is the pressure, and kx and ky are the fine scale permeability in x and y direction 
respectively. 

 
Figure 2. A coarse block consisting of fine scale permeability. 

In order to calculate all components of the permeability tensor, the flow equation should be 
solved twice with two different boundary conditions. A constant pressure and no flow boundary 
conditions are applied at the perpendicular boundaries of the coarse block. In the first case, a no 
flow boundary is assigned to the Y-direction while constant pressure is considered in X-direction. 

The second case considers that the flow direction is perpendicular to the first case, that is, the 
flow direction is along Y-direction and the no-flow boundaries are imposed in the X-direction 
(see Figure 3).  

 
Figure 3.  Boundary conditions applied on coarse grid when flow is in x direction (left) and y 
direction (right).  Thick blue lines indicate no flow boundaries on those edges. 
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By using results from these two solutions and applying Darcy’s law, volume averaged velocities 
and pressure differences are calculated over the entire rectangular grid. Now applying generalized 
Darcy’s law, four tensor components are calculated by solving the following system of equations.  
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where (ux)x and (uy)x are velocity components when flow is in x-direction, (ux)y and (uy)y are 

velocity components when flow is in y-direction, 
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gradients in x and y direction respectively when flow is in the y-direction. 

Using this boundary condition does not ensure that the resulting permeability tensor will be 
symmetric.  A least square method can be applied to ensure symmetric tensor 
(Durlofsky, 2005). Adding a constraint on cross terms ( yxxy kk = ) can be 
another option. In general, one expectation is that the calculated tensor will be 
positive definite, that is: 

0, 0 and . .xx yy xx yy xy yxk k k k k k> > >  

Dealing with irregular grids 

A similar approach can be used for irregular grids. We can discretize the irregularly shaped 
coarse scale block using the underlying fine scale model.  This simply requires determining 
whether a fine scale block lies within a coarse scale grid; this can be determined by evaluating 
whether or not the centre point of the fine scale block falls inside the irregular coarse block 
(Figure 4).  A more accurate approximation to the irregular coarse scale block can be obtained if 
the underlying heterogeneity model is at a sufficiently fine scale.  The irregular grid is surrounded 
by the smallest rectangle around it (dark black lined rectangle in Figure 4). Boundary conditions 
are applied at the boundary of this rectangular domain and pressure is calculated for the fine grid 
within this domain.  The area between the rectangular domain and irregular grid is called the 
buffer zone.  
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Figure 4. A diamond shape coarse grid and the underlying fine scale model. Shaded fine scale 
blocks lie inside the coarse irregular grid and are considered for the calculation of effective 
permeability. The rectangular region (dark black line) is the smallest rectangle that will 
encompass the irregular grid. 

Program 

The ptensor program is developed to calculate a full permeability tensor for a 2D unstructured 
grid block. It is based on the flowsim (Finite difference flow simulator) program which is a 
finite difference flow simulator that assumes flow in one direction and no-flow boundaries in the 
perpendicular directions. The ptensor program permits different options related to the shape 
of coarse grid, size of the buffer zone, the permeability value inside this zone, and the 
requirement for symmetry in the resulting tensor.  The parameters required for this program are: 
        
                                                   Parameters for PTENSOR 
                                                         ******************** 
Line START OF PARAMETERS: 
 1 perm.dat                 -Input datafile with permeabilities 
 2 1  2  0  0  0            - columns for kx,ky,kz, ky/kx, kz/kx 
 3 perm.out                 -output file for permeability tensor 
 4 100  60  1               -input : nx, ny, nz 
 5 1.0  1.0  1.0            -input : dx, dy, dz 
 6 4                        - Number of U.S. grid vertices 
 7     10 20       - Vertex 1; X,Y 
 8     30 40       - Vertex 2; X,Y 
 9     50 60       - Vertex 3; X,Y 
10     70 80       - Vertex 4; X,Y 
11 1 1 1 1                  -Buffer Zone Size: Left,Right,Top,Bottom 
12 1                        -Buffer Zone: Homogenous(1),Heterogeneous(0)   
13 20                       -   if (1),Constant Permeability Value  
14 0                        - Symmetric Tensor? Yes(1),No(0) 

The information about the fine scale permeability data file is input in Lines 1 and 2. In Line 3, the 
name of output file is specified. The number and size of grid cells in the input file should be 
specified in Lines 4 and 5. A general irregular shape grid can be considered as coarse grid for 
which permeability tensor is desired. The number of unstructured grid’s vertices is specified in 
line 6 and the corresponding vertices coordinates are specified in the following lines. Vertices 
should be provided starting from the top one and numbered counter clockwise. Four integer 
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numbers in line 10 control the size of buffer zone in the left, right, top and bottom of the 
rectangular domain respectively. Each integer value shows the number of fine grid which should 
be added to the smallest rectangular region. For example “1 2 2 1” means that the rectangle 
should be extended 1 cell from left, 2 cells from right, 2 cells from top and 1 cell from bottom 
(Figure 5). There is an option for the permeability value of buffer zone. Lines 12 and 13 enable 
the user to choose if the buffer zone is homogeneous or heterogeneous and what is the 
homogenous permeability value is (if put 1 in line 8). In line 14 there is an option to let the output 
tensor be symmetric. 

 
Figure 5. An unstructured grid with the buffer zone around it. Size of buffer zone is controlled by 
four integer values which indicates how many cells should the smallest rectangle be expanded on 
each side (2 from top, 1 from left, 2 from right and 1 from bottom). 

Example 1 

A simple diamond shape grid is imposed on a fines scale permeability model. The heterogeneous 
model is composed of five different facies. Constant permeability values are assigned to each 
facies (Figure 66 and Table 1).  
 

Categories Kx 
(mD) 

Ky 
(mD) 

Sand in Seq. 1 25 5 

Sand in Seq. 2 20 4 

Lime in Seq. 2 100 20 

Sand in Seq. 3 11 2.2 

Shale in Seq. 3 2 0.4 

 
Table 1. Five different facies and their permeability values. 
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Figure 6. An irregular grid is imposed on a heterogeneous medium (see Paper 206 for 
construction of this facies model). 

Initially, no buffer zone is considered and the option for symmetric tensor is turned on. The 
resulting tensor is as follows: 

41.315 0.5874
0.5874 3.7087

k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 

Different buffer zone conditions are applied to the irregular grid to check the sensitivity of the 
resulting tensor to the surrounding conditions. For this case, the option for symmetric tensor is 
turned off. Error! Reference source not found. shows the result of eight different buffer 
conditions. Here the size of buffer is shown in the same notation as the code. In the case of a 
homogeneous buffer zone, a constant permeability value of 20 mD is assigned to each cell in the 
surrounding buffer zone. The arithmetic, harmonic and geometric averages of permeability values 
in rectangle region are also shown in the table. 

In all cases the calculated permeability tensor was positive definite. In heterogeneous buffer zone 
case, using different buffer zone size seems to give consistent tensor values. It has been observed 
by a number of authors that improved accuracy in k can be achieved if a larger local problem is 
solved (Gomez-Hernandez and Journel (1994); Holden and Lia (1992)). In the homogeneous 
buffer zone case, results are different from heterogeneous case but they are consistent as the size 
of buffer changes. 

Table 3 shows the result for three cases which different homogeneous permeability values are 
assigned to the buffer zone.  This table shows that as the value assigned to the homogeneous 
permeability of buffer zone increases it seems that the permeability tensor diverges quickly.   

Example 2 

An irregular polygonal grid with seven sides is imposed on a fine scale permeability model 
(100x60 cells). The medium is completely heterogeneous and the permeability values assigned to 
each facies are the same as Example 1 (Figure 7). A large heterogeneous buffer zone is 
considered and pressure is calculated on fine scale. The result permeability tensor is as follows: 
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41.245 0.7204
0.8474 8.4145

k
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Figure 7. A polygonal irregular grid imposed on completely heterogeneous medium. 

Conclusions and Future Work 

A flow based upscaling techniques is examined using finite difference to calculate local 
pressures. The resulting tensor is positive definite and it can be symmetric in the case that a 
symmetric tensor is specified.  For example, a symmetric tensor may be expected for a regular 
symmetric grid with homogeneous permeability field.  Results are quite sensitive to the size and 
permeability of the cells within the buffer zone. The ptensor code is as fast as conventional 
flowsim program and the computational time is related to the calculation of pressure on fine 
scale.  

Generalizing the method to 3-D is straightforward and will be undertaken.  This will require a 3-
D fine scale permeability model and solution of the 3-D steady state flow equation. The important 
issue here is how to deal with shape of 3-D irregular grid. The shape can be controlled by the 
coordinates of the vertices, which will define planar surfaces of the unstructured grid.  A slight 
modification to the ptensor program is foreseen to handle these requirements. 

Validation of the results from this approach is required.  This will involve more detailed 
sensitivities to be undertaken, as well as comparisons against other tensor calculation approaches.  
For instance, if we consider a regular 3D block, we could compare the results of this simulation 
approach to that proposed by (Aasum et. al., 1993).  Of course, the results obtained via the 
proposed method can be checked by running flow simulation on both fine scale and the upscaled 
permeability model, and comparing simulation results such as recovery factor.  
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Table 2. Eight examples with different buffer zone conditions. 

 
 
 
 
 
 

Buffer zone 
permeability (md)  kxx kxy kyx kyy KA KG KH 

1 31.3164 -0.0851 0.0363 3.9745 17.9535 3.4579 17.9075 

20 36.5943 -1.2195 0.2746 5.1795 17.9535 3.4579 17.9075 

100 38.2964 -2.1390 0.7123 5.7806 17.9535 3.4579 17.9075 

 
Table 3. Three examples with different homogeneous buffer zone permeability. 

Buffer 
Zone kxx kxy kyx kyy KA KG KH Qx-in Qx-out Qy-in Qy-out 

1 1 1 1 41.4914 -0.1766 0.6144 3.7864 33.2727 15.8638 6.5008 11.1682 11.1770 2.0884 0.7638 

2 2 2 2  41.4720 -0.1561 0.6050 3.8455 32.2665 15.1962 6.2455 10.9921 10.9967 2.0860 0.6994 

5 5 5 5  41.5900 -0.1198 0.6210 4.0132 30.2901 13.7855 5.6969 10.6044 10.6044 2.1683 0.5773 

H
et

er
og

en
eo

us
 

5 3 1 2 41.5751 -0.1315 0.5621 3.8340 32.4685 14.9698 6.1051 9.9689 9.9729 2.2183 0.7616 

1 1 1 1 36.7364 -1.2821 0.2402 5.1884 19.6001 3.8746 16.4031 9.6888 9.6042 6.8161 6.2423 

2 2 2 2  36.5943 -1.2195 0.2746 5.1795 17.9535 3.4579 17.9075 9.5731 9.4802 7.1727 6.5885 

5 5 5 5  36.3405 -1.1096 0.3266 5.1533 14.0954 2.6486 22.8091 9.3906 9.2880 8.0142 7.4001 

H
om

og
en

eo
us

 

5 3 1 2 36.3217 -1.1661 0.3356 5.1759 17.1332 3.2673 18.7641 8.5519 8.4742 8.3410 7.7308 


