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The McMurray formation consists of heterogeneous Cretaceous bitumen-saturated sands.  The 
reservoirs are thick and laterally extensive in the main fairways.  Many commercial projects are 
in the early stages of development.  Resources too deep to mine are considering Steam Assisted 
Gravity Drainage (SAGD).  Detailed high resolution 3-D geostatistical modeling is useful for 
individual well pair or pad flow simulation, but is neither practical nor necessary for resource 
assessment over large areas. 

This paper presents a practical and tested methodology for resource assessment in the Surmont 
Lease.  The uncertainty in over 30 correlated variables is calculated on a dense 2-D grid using 
all available information including wells, seismic and geologic trends.  The correlation structure 
between the variables is modeled under a multivariate Gaussian model.  The local distributions 
of uncertainty have been checked with cross validation and with more than 100 new wells drilled 
during the last two drilling seasons.  Resource uncertainty over the entire lease area and a 
number of arbitrary development areas is derived from the 2-D maps of uncertainty.  A combined 
P-field / LU simulation approach is used; the global uncertainty is consistent with the local 
uncertainty. 

Introduction 

The McMurray formation contains a large oil sands resource.  A small portion of oil sands can be 
recovered by surface mining; most of bitumen resource will be produced by advanced heavy oil 
recovery technology such as the SAGD process.  Accurate estimation of the in-situ resource 
range and associated risks is important for reservoir planning and development. 

Detailed 3-D models of heterogeneity are useful.  They provide numerical models consistent with 
small scale well data, measures of connectivity and visualizations that appear realistic.  The 
challenge of 3-D models in the context of our problem is twofold: (1) the size of the models, and 
(2) the requirement for realistic summaries of reservoir quality at each location.  The study area is 
more than 500 km2, the thickness is on the order of 100m, there are more than 10 variables of 
interest and we would need 100 or more realizations to represent uncertainty.  More than 20 
billion numbers would need to be routinely manipulated to understand Surmont at a relatively 
coarse discretization of 50m x 50m x 1m. 

The second challenge is more subtle.  Reservoir management decisions depend in many factors 
such as the thickness of good quality reservoir, presence of top or bottom water, structure of the 
base reservoir and geological variability.  These factors are, for the most part, areal summaries of 
the reservoir.  They can be reliably calculated from the well data; however, they are not as 
reliably estimated from 3-D models.  High resolution geostatistical models do not reproduce all of 
the complex geological features and trends.  This challenge is addressed by research. 
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In summary, the advantages of using 2-D geostatistical modeling include (1) good estimates of 
reservoir quality consistent with available well data, (2) uncertainty at each location, (3) simple 
and fast modeling of variables required for decision making.  This paper demonstrates the 
application of 2-D geostatistical modeling. 

Several reservoir parameters are important.  The thickness of net pay or net continuous bitumen 
thickness (NCB) is related to the height of an anticipated steam chamber.  The bulk oil weight 
(BOW) measures the fraction of the bitumen mass to the total rock mass.  The porosity (�net) and 
oil saturation (So) over the net continuous bitumen are related to the recoverable bitumen by the 
SAGD process.  An important feature of many areas of the McMurray is the presence of top 
water and top gas that can provide a sink for the injected steam and adversely affect recovery.  
These upper units are referred to as thief zones for the injected steam.  Each project and company 
identifies different critical parameters.  The typical project will involve predicting 20 to 30 
variables at each 2-D location.  Only a few variables will be described in this review paper.  Most 
of the data is derived from well logs and core data. 

The available data variables are divided into two types: primary variables that we must predict 
and secondary variables that are established from geophysical interpretation or geological trend 
mapping.  Secondary variables are used to constrain the prediction of primary variables away 
from the well data.  The secondary variables are often structural variables.  Three structural 
surfaces will be used in this paper: (1) the bottom surface of the McMurray formation (BSM), (2) 
the top surface of the McMurray formation (TSM), and (3) the Wabiskaw-McMurray surface 
(WMS), which is a maximum flooding surface above the McMurray formation.  These structural 
data are usually quite reliable because of their lateral continuity and they are derived from a 
variety of data sources (well and seismic data).  These three variables and the calculated gross 
thickness (GTM) of the McMurray are treated as independent secondary variables for the 2-D 
modeling. 

Methodology: Local Uncertainty 

Inference of uncertainty at unsampled locations requires the choice of a multivariate distribution.  
The multivariate distribution may be explicitly defined (the multivariate Gaussian distribution) or 
implicitly defined as in the cases of object based modeling or multiple point statistics.  The latter 
implicit models are suited to a limited number of categorical variables.  A multivariate Gaussian 
distribution is adopted in this paper.  The methodology described below relates to implementation 
choices to infer the required parameters and process the resulting uncertainty. 

All variables are transformed one-at-a-time into a standard normal or Gaussian distribution.  A 
decision is then made that the joint distribution between all variables is multivariate Gaussian.  
This is a standard assumption.  We check bivariate Gaussianity by displaying all cross plots – the 
probability contours should be elliptical with no non-linear, heteroscedastic or constraint features.  
The local distributions of uncertainty from the applied methodology are back transformed to 
original units.  The multivariate Gaussian model has a long and established history in statistics 
and geostatistics.  The specific implementation details used in this paper are described more fully 
in Deutsch and Zanon (2004). 

The first step is to construct a conditional distribution of uncertainty in each variable at each 
location using the nearby well data.  This is done with the normal equations, also known as 
simple kriging.  These conditional distributions are defined by a mean and variance y*

K and �2
K.  

These distributions would be the final result if we had no secondary data.  The presence of 
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secondary data must be considered.  Following a loose Bayesian formalism we consider the 
following: 

• Prior – local conditional distribution generated from surrounding well data of the same 
type, 

• Likelihood – local conditional distribution generated from local data of different types, 
and 

• Updated – local conditional distribution that accounts for the aforementioned 
distributions. 

The likelihood distributions account for the secondary data that are available at every location.  
This is accomplished with the normal equations using the collocated N by N matrix of correlation 
coefficients.  In our context, the matrix of correlation coefficients is symmetric, that is, ρij=ρji.  
The diagonal elements are all the variance of a standard Gaussian variable, which is 1.  The 
correlation coefficients are calculated directly from the available data.  The correlation 
coefficients between the secondary data are very well informed.  The correlation coefficients 
between the primary and secondary data are calculated from values at well locations.  These 
correlation coefficients are reasonably stable with more than 20 (or so) well data. 

The matrix of correlation coefficients may not be positive definite if the values are calculated 
from different numbers of data.  We often calculate the entire matrix from the observations at the 
well data locations, which ensures a positive definite result. 

The conditional distribution due to the secondary data (the likelihood) is calculated from the 
correlation matrix and the secondary data.  The likelihood distribution is defined by the mean y*

L 
and variance σ2

L.  These values summarize the information carried in all secondary data regarding 
the variable being predicted.  There are different likelihood values for each primary variable 
being predicted.  Consider n normal scores secondary data, yi, i=1,…,n.  The mean and variance 
are calculated as: 
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The weights λj, j=1,…,n can be calculated by solving the n linear equations known as the normal 
equations and also known as simple kriging: 

 
, ,0

1

1, ,
n

j i j i
j

i nλ ρ ρ
=

⋅ = =∑ …
 (3) 

The two conditional distributions defined by (y*
K, σ2

K) and (y*
L, σ2

L) must be merged together to 
create an updated distribution.  In the context of a multivariate Gaussian distribution and a 
Markov model of coregionalization, the updating of the prior distribution and the likelihood 
distribution is defined by: 
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The location-dependent updated (y, σ2) quantify the uncertainty at each location.  The non-
standard Gaussian distributions can be back transformed to original units to provide uncertainty 
in units that matter to us.  The back transformation is non-linear, so the mean cannot be back 
transformed directly.  Quantiles can be back transformed with no bias; therefore, the back 
transform of the final distribution requires transforming a large number of quantiles. The mean 
and variance in real units can be calculated using these transformed quantiles.  The Gaussian 
mean and variance are kept because joint uncertainty requires simulation from them. 

The three-step procedure of establishing the local conditional distributions is efficient.  The three 
steps are (1) calculate the prior distribution, (2) calculate the likelihood distribution, and (3) 
merge the prior and likelihood distributions.  There is an implicit Markov assumption in this 
approach, that is, the hard data perfectly screen the secondary data at the same location.  Cross 
validation and checking with new drilling backs up this assumption; it is realistic. 

The alternative multivariate Gaussian approach would be to fit a linear model of 
coregionalization to all variables and perform cokriging.  This was considered impractical in the 
past; however, it would be possible with automatic variogram fitting and many well data.  The 
advantage of the three step procedure is transparency and an easy way to understand the 
contributions of local well data and secondary data.  

Methodology: Joint Uncertainty 

The local uncertainty at small scale is represented by distributions of uncertainty in all of the 
primary variables.  The primary variables are used to calculate the OOIP and categorize the 
reservoir by economic viability and/or thief zone type.  The steps described above permit the 
calculation of uncertainty in each variable; however, there are two aspects of joint uncertainty 
that require simulation. 

Firstly, the uncertainty in derived variables is a form of joint uncertainty.  Consider the OOIP 
calculated as: 

OOIP = 6.29 x 104 • NCB • φnet • So 

Where the net continuous bitumen thickness, porosity, and bitumen saturation all enter into the 
calculation of OOIP.  6.29 is converts to barrels.  In general, combining multiple correlated 
variables requires simulation. 

Secondly, there is interest in the uncertainty in the bitumen resource over large areas such as a 
lease boundary or pad location.  Local uncertainty, as described above cannot be simply 
combined to obtain the joint uncertainty over larger areas or scales. 

The common feature of these two aspects is the presence of multiple variables and correlation.  In 
the first multivariate case, there are relatively few variables (3 to 30) and the LU simulation 
approach is applicable.  In the second multivariate spatial case, we choose a different simulation 
technique because of computer limitations.  A sequential approach would work, but that would 
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require recalculating all of the conditional distributions in a random path using previously 
simulated values.  It is desirable to draw all of the values simultaneously so that the large scale 
uncertainty is perfectly consistent with the local distributions of uncertainty.  A multivariate 
Gaussian P-field-like simulation technique is used for spatial simulation. 

Accounting for the correlation between multiple variables at the same location (NCB, φnet, and 
So) is done with LU simulation.  LU simulation has been used for many years, but popularized in 
geostatistics by Alabert, 1987.  Multiple realizations (say 100) of the three variables are drawn 
accounting for the correlation between the variables (see yellow shaded squares in the table 
below).  Then, the OOIP is calculated with each set of numbers.  The uncertainty in the OOIP (or 
any other derived property) can be assembled from the realizations.  A schematic table is shown 
below.  Each set of three numbers (in yellow) is drawn by LU simulation using, for example, the 
LUSIM program from GSLIB (Deutsch and Journel, 1998). 

 

Realization 
Number NCB φnet So Calculated

OOIP 
1 10 0.30 0.85 160000 bbl 
2 9 0.28 0.82 130000 bbl 
… … … … … 

100 11 0.27 0.83 155000 bbl 
 

The LU method is suitable when the problem is small.  The use of the LU method to simulate 
multiple dependent variables is straightforward.  The matrix of correlation coefficients is 
decomposed by Cholesky decomposition: C=LU.  A vector of uncorrelated standard normal 
values w is generated by a random number generator, then the correlated values are calculated by: 

 sy w= ⋅L  (6) 

The ys values have the right correlation structure, but they are standard Gaussian.  The local 
conditional distributions of each variable are non-standard (see Equation 5); therefore, we 
account for that by non-standardizing the variables: 

 yns  =  ys●σ+ y (7) 

The simulated realizations of non-standard values can be back transformed to original units and 
calculations performed, see table above. 

The LU formalism described above can be performed at each location leading to uncertainty in 
derived variables at each location; however, there is often interest in uncertainty over multiple 
locations, perhaps the entire lease.  To accomplish this joint simulation we use a P-field-like 
simulation technique.  Unconditional standard normal variables are simulated for each of the n 
primary variables under consideration.  The appropriate normal scores variogram used in the 
kriging of the prior distributions is used.  The vector of unconditional simulated values at each 
location is taken as the w vector in Equation 6.  The multiplication by L ensures that the values 
have the correct spatial correlation structure.  Non-standardizing by Equation 7 ensures that all 
local information is accounted for.  Then, the back transformed realizations can be processed for 
uncertainty calculations. 

This procedure has many nice features.  Firstly, it is easily performed with virtually all 
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geostatistical software packages.  Secondly, it provides realizations of joint uncertainty that are 
perfectly consistent with the local uncertainty quantified above.  Finally, it approximately 
reproduces the correct spatial structure as quantified by the input variograms and correlation 
matrix.  There is a slight non-stationarity in the variogram structure of the simulated values: the 
continuity near conditioning data is slightly overstated.  This is a well known feature of p-field 
simulation (Srivastava, 1992).  Uncertainty in any arbitrarily large area is easily assembled from 
the multiple correlated realizations. 

This provides a reasonable assessment of joint uncertainty; however, uncertainty in the input 
parameters is not considered in this analysis.  A technique such as the spatial bootstrap could be 
used to assess uncertainty in the input parameters. 

Resource assessment in the Surmont Lease 

The Surmont Lease location and well data are given in Figure 1.  A small area of the Surmont 
Lease is considered below. 

2-D mapping 

Five types of maps are generated for each reservoir parameter.  The trend map is used to reveal 
the large scale trend in each parameter.  The prior map is the kriging map of each parameter after 
being transformed to a Gaussian variable.  These two maps are created for understanding each 
parameter independently.  A correlation matrix plots the correlation between the variables.  Based 
on the correlations, the likelihood map is created with the secondary data.  The correlation matrix 
and the likelihood map provide information for understanding the correlation between the 
variables.  Then, the Bayesian updating approach is applied to merge the prior models and 
likelihood models.  This approach is similar to collocated cokriging, and is implemented in 
Gaussian space.  The updated model contains the information from well data and from secondary 
data.  The updated map shows the results of Bayesian updating in the Gaussian space.  The 
updated Gaussian distributions must be back transformed to real units and are often summarized 
by the final maps, which are the P10/P50/P90 maps of each parameter or the probability maps of 
these reservoir quality parameters at certain threshold. 

Trend Maps 

The trend map is used to provide the overall trend of each variable in the entire study area.  This 
map is created by simple kriging with a variogram designed to reveal large scale features.  
Usually, a long range variogram (1/3 of the domain size) with modest nugget effect (30%) is 
used.  All reservoir parameters are mapped with this trend variogram.  As an example, the trend 
maps of the NCB and BOW are shown in Figure 2.  Some high value zones are shown in the left 
of the study area for NCB. 

Prior Maps 

The prior model is also created by kriging but with the data in Gaussian space and the variogram 
calculated and fit from the well data.  Variogram maps are helpful to find the direction of 
continuity in each parameter.  Then, the directional variograms are calculated.  The experimental 
variograms are modeled using a semi-automatic variogram fitting algorithm.  The variogram and 
the model of the NCB are shown in Figure 3. 

Kriging was then performed using these variogram models and the normal score data.  The prior 
model generates an uncertainty distribution at each location.  The uncertainty is a nonstandard 
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normal distribution with kriged mean and variance.  The prior map for the NCB and BOW are 
also shown in Figure 2.  They look similar to their trend maps but have more detailed small scale 
features.  The values on these maps are only conditional to surrounding data of the same type; we 
still must consider the secondary data.  If the prior maps do not show the large scale trend 
features from the trend maps, then kriging with a local mean is considered to impose the large 
scale trend values. 

Correlation Matrix and Likelihood Maps 

The cross plot of each pair of the variables is plotted to check the data and determine the 
correlation between each the pair of variables.  Data that fall outside of a trend with the other data 
should be reviewed and perhaps eliminated to obtain a more representative correlation between 
the variables.  Particular attention is paid to the three characteristic non-Gaussian features of (1) 
non linear relationship, (2) heteroscedastic variability, that is, changing variability of one variable 
as another variable changes, and (3) constraint features where one variable is constrained by 
other.  The correlation coefficients are summarized and shown in a correlation matrix (Figure 4).  

With the secondary data and the correlations between a primary reservoir variable and the 
secondary variables, we can calculate the likelihood for each reservoir variable.  The four 
variables used for the secondary data are shown in Figure 5.  The likelihood model provides a 
conditional distribution of each variable at each location conditional to collocated data of other 
types.  The likelihood results are mapped to show the information from the secondary data.  The 
likelihood maps of NCB and BOW are shown in Figure 6. 

Updated Maps and Final Maps 

Bayesian updating is used to merge the prior models and likelihood models.  The resulting model 
is called the updated model.  The uncertainty of each parameter at each location is generated from 
the information of well data and the secondary data.  The uncertainty distribution is also a 
nonstandard normal distribution with updated mean and variance.  The updated map shows the 
updated means in Gaussian space.  The updated maps of NCB and BOW are shown in Figure 6. 

The updated distribution needs to be transformed to real units to show the best estimate and the 
uncertainty at each location in real values.  Usually, these features are summarized by P10, P50 and 
P90 values.  The P50 values provide estimates of each reservoir parameter at each location.  We 
also consider the P10 and P90 values at those locations.  The P10 low values provide a conservative 
estimate because there is a 90% probability of being larger than this value.  The P10 map can also 
be used to identify the high value areas because when the P10 value is high then the value is surely 
high.  The P90 values provide an optimistic estimate because there is a 90% probability of being 
less than this value.  The P90 map can be used to identify the low valued areas because when the 
P90 value is low then the value is surely low. 

All variables are predicted.  The maps of local P10, P50 and P90 values for NCB are shown in 
Figure 7.  The green color in the P10 map shows where there is a 90% chance to have more than 
25 meters of net continuous bitumen.  The blue color in the P90 map shows where there is a 90% 
chance to be less than 20 meters of net continuous bitumen.  

Validation 

Reservoir modeling consists of many interdependent modeling steps with ample opportunity for 
mistakes and/or undue influence of problem data.  It is impossible to completely validate models; 
however, there are some basic checks that can be used to identify problem data or errors in the 
geostatistical modeling.  Cross validation is used to estimate the variables at locations where we 
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know the true value.  The actual data are deleted one at a time and re-estimated from the 
remaining neighboring wells.  Then, we can check the accuracy of the predicted distributions of 
uncertainty to evaluate the goodness of modeling parameters. 

All well locations were used for cross validation.  Likelihood calculations and updating were 
performed.  Cross validation was performed with the Gaussian transforms of the original 
variables.  The results were back transformed to original units. 

Figure 8 shows the accuracy plots of the NCB and BOW.  The width of symmetric probability 
intervals is plotted on the abscissa axis.  The fraction of true values within the interval is plotted 
on the ordinate axis.  In the accuracy plot, the points on the 45o line means that the model is both 
accurate and precise.  If the points fall above the line, the model is accurate but not precise.  If the 
points fall below the line, the model is neither accurate nor precise. Figure 8 shows that the model 
for NCB is accurate and precise.  

A number of wells were drilled after these models were constructed.  The goodness of the 
probabilistic estimates can be checked and compared to the new drilled wells.  The results are 
shown in Figure 9.  The model for NCB worked out extremely well. 

The fairness of the probability values, that is, a good accuracy plot is not enough for good 
probabilistic predictions.  The width or variance of the local distributions must also be narrow for 
good distributions. 

Global resources assessment 

There was an interest in the recoverable bitumen resource by SAGD and the original oil in place 
for SAGD (SAGD OOIP) in the Surmont lease and other arbitrarily large areas.  We refer to these 
large areas as “global” to distinguish them from the “local” small 100m by 100m areas calculated 
in the 2-D models.  The global SAGD OOIP was mostly affected by the net continuous bitumen 
thickness (NCB) and the presence of steam thief zones.  A threshold of NCB=18m was 
considered as the minimum thickness for the economic recovery of bitumen with the current 
SAGD technology.  When the presence of a certain thief zone is present, a minimum of 30m 
NCB is considered for SAGD to be economically successful.  A lower 10m NCB cutoff was also 
considered to include the resource that could be used for future development when more 
advanced bitumen recovery technology becomes available.  The global SAGD OOIP was 
calculated with different NCB cutoffs and for different thief zone types. 

The calculation of SAGD OOIP and thief zone (TZ) type required six correlated variables: net 
continuous bitumen (NCB), net porosity (φnet), net water saturation (Sw), thief zone protection 
factor (TZfactor), effective water thickness (EWT), and effective gas thickness (EGT).  These 
variables had been analyzed as part of 2-D geostatistical studies. 

SAGD OOIP = NCB • φnet • (1 – Sw) 

TZ type = 1, if TZfactor ≥ 5 m or (EWT = 0 m and EGT = 0 m) 

             = 2, if (0.8 m > EWT > 0m) or (EWT = 0 m and EGT > 0 m) 

             = 3, if EWT ≥ 0.8 m 

The SAGD OOIP variable must be multiplied by area to get a volume.  The uncertainty in global 
SAGD OOIP was a concern to the Surmont Team.  It was calculated using the Bayesian updated 
2-D models.  An estimate of global SAGD OOIP from prior information alone was also 
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interesting.  The logic and calculations used to assess uncertainty and to obtain the estimate over 
large regions of the Surmont lease are summarized as follows. 

Uncertainty in Global SAGD OOIP 

Uncertainty of small 100 m by 100 m areas or the incrementally larger LSD areas are captured 
very well by the 2-D models.  Assessing uncertainty over larger scales, however, requires a 
different approach.  Calculation of uncertainty from a local uncertainty measure to a regional or 
global uncertainty measure requires consideration of the spatial correlation within the 
region/domain because the assumption of independence between the smaller scale areas will 
drastically understate uncertainty at a large scale.  The methodology presented above (also 
summarized in Ren et al., 2005) was used.  The key steps are (1) construct local distributions of 
uncertainty (done already); (2) generate spatially correlated probability values; (3) draw values 
for all variables at all locations and keep them together as a realization.  Step 1 has been done 
with priors, likelihoods and Bayesian updating with a multiGaussian kriging approach.  Step 2 
will use sequential Gaussian simulation.  Step 3 will use LU simulation. 

The reporting of uncertainty for an arbitrary volume required six proportions (in turquoise color 
in the table below): the proportion/probability of each of the three thief zone types and the 
proportion/probability of being above 10, 18, and 30 m NCB.  Each of the six proportions was 
characterized by a distribution of uncertainty.  Uncertainty was summarized by three values: a 
P10, P50, and P90.  These were shown in the turquoise boxes in the table below.  Further, there was 
the distribution of uncertainty in the SAGD OOIP with no constraint on the thief zone type and 
no constraint on the net continuous bitumen (the bright yellow color square in the table below).  
There were six distributions of SAGD OOIP uncertainty for the three different thief zone types 
(no constraint on net continuous bitumen) and the three different NCB cutoffs (no constraint on 
thief zone type), which are shown in the pale yellow squares in the table below. 

There were nine distributions of uncertainty in the SAGD OOIP for all combinations of the three 
thief zone types and the three NCB cutoffs (shown in the tan color in the table below).  These 
distributions of uncertainty had P10, P50, and P90 values for SAGD OOIP, as well as P10, P50, and 
P90 values for the proportion of values within the NCB/TZ class (shown in turquoise boxes above 
the tan boxes below). 

TZ1 TZ2 TZ3
P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90

P10 / P50 / P90 P10 / P50 / P90 P10 / P50 / P90
NCB > 30

P10 / P50 / P90

P10 / P50 / P90

P10 / P50 / P90

Uncertainty for an Arbitrary 
Volume

Thief Zone Type

No Constraint

NCB 
Cutoff

No Constraint

P10 / P50 / P90

P10 / P50 / P90

P10 / P50 / P90

NCB > 10

NCB > 18

 
In summary, 3+3+9=15 distributions of proportions (three numbers each) and 1+3+3+3•3=16 
distributions of SAGD OOIP uncertainty (three numbers each) were used to report the uncertainty 
for an arbitrary volume: 93 numbers in all.  Uncertainty was tabulated according to the format 
shown above. 

The underlying models of uncertainty were created at a 100 m by 100 m areal scale. Uncertainty 
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at this scale is dominated by the spacing of nearby wells and the available secondary data 
variables. This uncertainty can be straightforwardly scaled up to the LSD scale (about 400 m by 
400 m) by arithmetic averaging under an assumption that the values are highly correlated over a 
400 m scale. 

The uncertainty at the 100 m or LSD scale was represented by distributions of uncertainty in all 
of the variables including net continuous bitumen (NCB), net porosity (φnet), net water saturation 
(Sw), thief zone protection factor (TZfactor), effective water thickness (EWT), and effective gas 
thickness (EGT).  The uncertainty in each of these variables does not give uncertainty in SAGD 
OOIP or TZ type.  The correlation between these variables and the spatial correlation within the 
region/domain must be taken into account. 

Accounting for the correlation between NCB, φnet,…, and EGT was done with simulation.  
Multiple realizations (L=100) of the six variables were drawn accounting for the correlation 
between the variables and the spatial correlation within the region/domain (see purple shaded 
squares in the table below).  Then, with each set of six numbers the SAGD OOIP and TZ type 
were calculated (see yellow squares on the right).  The results were analyzed to fill in the 
uncertainty table. 

Real # NCB φnet Sw TZPF EWT EGT SAGD 
OOIP 

TZ 
Type 

1         

2         

3         

…         

L         
 

There are a number of simulation techniques in use throughout statistics and geostatistics.  The 
LU method (named after the Cholesky LU matrix decomposition method) has been around for a 
long time and is suitable when the problem is small.  For example, consider assessing uncertainty 
in the SAGD OOIP and TZ type at a particular location, that is, filling in a table as shown above. 

The use of the LU method to simulate multiple dependent variables is straightforward. Only the 
correlation matrix between the six variables was required, and a set of correlated normal scores 
was required to account for the spatial correlation of the variables. The latter requirement was 
satisfied by generating unconditional realizations using sequential Gaussian simulation for each 
of the six variables. 

The simulated variables were then used to calculate the corresponding SAGD OOIP and TZ type 
at each location. This was performed for multiple realizations and the uncertainty was assessed.  
The resulting distributions of uncertainty are shown in Table 1.   

Uncertainty depends on the amount of local well data, the secondary data variables and the 
modeling approach and parameters.  We have observed a consistent decrease in uncertainty as 
additional delineation wells are drilled. 
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Conclusion 

A 2-D geostatistical modeling process is demonstrated to characterize the reservoir quality of the 
McMurray formation.  Many different maps were created to reveal different aspects of the 
reservoir properties and their uncertainty.  Trend maps and prior maps can be used to understand 
the variability of the reservoir parameter independent of any secondary information.  The 
likelihood maps can be used to show the information from the secondary data.  The updated maps 
contain the information from the well data as well as from the secondary data.  The local 
uncertainty is accessed by the 2-D models, and the P10, P50, and P90 maps provide heterogeneity 
and uncertainty information on the bitumen reservoir properties.  Moreover, the global 
uncertainty is assessed by post process methods. 

There are limitations to the approach.  Detailed 3-D models of heterogeneity must be constructed 
separately.  There is a strong reliance on stationarity and multivariate Gaussianity; subdividing 
the area or considering local changes in modeling parameters may be required.  The sources of 
uncertainty (sensitivity) must be understood separately. 

Despite these limitations, the 2-D mapping methodology has great applicability for resource 
assessment.  Multiple data types are integrated accounting for their information content and a 
defendable model of uncertainty is generated. 
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Nomenclature 

n = number of data used in a calculation 
y = normal score transform of a variable 
σ = standard deviation 
λ = weight calculated by normal equations 
ρ = correlation coefficient 
 
Subscripts 
 
K = prior distribution from same data type 
L = likelihood distribution from same secondary 
s, ns = standard Gaussian, non-standard Gaussian 
i, j = data indices 
0 = index for location being estimated 

            
Figure 1: The Surmont lease map with well locations.  
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Figure 2: The trend maps of NCB and BOW are shown on the top, and the Prior maps are shown 
on the bottom. 

 
Figure 3: Directional variograms and fitted models for NCB (left) and BOW (right). 
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Figure 4: The correlation matrix of the 11 variables 

 

 
Figure 5: The maps of the four secondary data  
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Figure 6: The likelihood maps (top) and the updated maps (bottom) of NCB and BOW. 
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Figure 7: Maps summarizing uncertainty in NCB (left) and BOW (right).  The P10 low values 
are shown at the top, the P50 values are shown in the middle and the P90 high values are shown 
at the bottom. 
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Figure 8: The accuracy plots of cross validation results for NCB and BOW. 
 
 

 
Figure 9: Accuracy plot of 2-D model vs. new wells of 2004 
 
 

TZ1 TZ2 TZ3
0.392 / 0.418 / 0.445 0.214 / 0.228 / 0.243 0.329 / 0.353 / 0.382

0.864 / 1.000  / 1.156 0.336 / 0.382 / 0.438 0.111 / 0.129 / 0.153 0.413 / 0.479 / 0.569

0.238 / 0.258 / 0.282 0.110 / 0.127 / 0.150 0.295 / 0.328 / 0.361

0.324 / 0.371 / 0.429 0.099 / 0.118 / 0.141 0.408 / 0.475 / 0.566

0.196 / 0.219 / 0.249 0.069 / 0.082 / 0.103 0.263 / 0.300 / 0.338

0.299 / 0.348 / 0.410 0.075 / 0.091 / 0.116 0.389 / 0.459 / 0.551

0.119 / 0.142 / 0.172 0.014 / 0.020 / 0.030 0.163 / 0.200 / 0.246

0.219 / 0.271 / 0.333 0.021 / 0.030 / 0.045 0.284 / 0.357 / 0.455
Total No. Blocks = 55483

Uncertainty for Lease Area               
No Constraint

No Constraint

Thief Zone Type

NCB 
Cutoff

NCB > 10

NCB > 18

0.834 / 0.974 / 1.134

0.761 / 0.908 / 1.073

0.527 / 0.663 / 0.827NCB > 30 0.294 / 0.365 / 0.446

0.535 / 0.602 / 0.689

0.652 / 0.715 / 0.784

 
Table 1: The Surmont Lease resource estimation and uncertainty assessment:  the blue shaded 
boxes are proportions and the others are barrels – standardized to “1.000” for the lease. 
 


