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Indicator kriging is an important unbiased estimator and is widely used in multiscale facies 
modeling, but applying indicator kriging will sometimes lead to estimated facies proportions 
which are negative or do not sum to one. Logratio transformation can help solve this problem 
and is attracting the interest of more and more geostatisticians. However, two critical problems 
are unavoidable in logratio transformation and thus make it not suitable for the multiscale facies 
modeling. This paper will discuss the main procedures of multiscale facies modeling; the basic 
formulation and common application of logratio transformation; and problems of logratio 
transformation in multiscale facies modeling. Finally, a brief discussion on the alternative 
approaches in solving the negative proportion and sum constraint problem in indicator kriging is 
presented. 

Introduction 

The distribution of lithofacies is one of the most important factors in reservoir modeling. Many 
critical petrophysical properties in reservoir analysis and estimation, such as porosity and 
permeability, are highly correlated with facies type.  A realistic model capturing the spatial 
distribution of various facies categories over the area of interest will be significantly helpful for 
modeling of reservoir characteristics and performance. Various approaches are used in multiscale 
facies modeling, among which are indicator kriging and sequential indicator simulation which are 
widely applied and are proven to be practical and efficient in modeling the spatial uncertainty of 
facies distribution. 

An issue arises with indicator kriging because it can lead to a negative proportion of the predicted 
facies and/or the predicted proportions of all the facies over the same area do not sum to 1. 
Logratio transformation is an alternative to solve this constant-sum constraint and its special 
properties make it frequently applied in compositional data analysis. However, two longstanding 
issues remain a challenge in the logratio approach: the occurrence of zero proportion of certain 
facies categories in any sampled or un-sampled location will make the transformed logratio non 
existent; furthermore, the nonlinearity of logratio transformation can lead to bias when we 
perform linear estimation and back transform the result to the original data. These two issues 
make logratios unsuitable for multiscale facies modeling. 

In Part 1 of this paper, we give a brief description on the background and available approaches to 
multiscale facies modeling.  In Part 2, we introduce the essential formalism of the logratio 
transform and its common applications. In Part 3, we discuss the application and problems of 
applying logratios for multiscale facies modeling.  We conclude with a brief discussion on some 
alternatives that may help solve the negative proportion and sum constraint problems in the 
indicator kriging and simulation approach. 
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Background on Multiscale Facies Modeling 

Multiscale facies modeling is often applied in reservoir analysis. In the production process and 
various geological and reservoir tests, people obtain facies information at the sampled locations. 
As shown in Figure 1, suppose we have K (say, 4) facies, F1, …, FK in a 3-dimensional space 
V , and use ( )F u to denote the facies type at point u . For a single well in this space, we have a 
vertical series of these 4 facies. Equivalently, for each small sampled location point αu , we have 
an indicator variable defined as: 

1   if ( )
( ; )

0   otherwise       
kF F

I k α
α

=⎧
= ⎨
⎩

u
u  

where k=1, …, K.  Scaling the indicator over a block volume v Vβ ⊆ , we obtain the proportion  

of the thk  facies kp β  as 

1 ( ; ) ,kp I k d v
v

β

β β
β

= ∈∫
v

u u u  

Depending on the scale of support νβ, different values and distributions will be obtained for facies 
proportion kp β . 

 
Figure 1: Multiscale facies modeling. 

This scale-dependent transition from a categorical to continuous property poses two interesting 
issues.  Firstly, inferring facies proportion, 0kp , for each facies category at a specified volume 
centred at an unsampled location 0u  based on available point sampled facies data is a 
non-trivial problem.  Secondly, once the facies proportions for a specific volume can be inferred, 
extending this distribution of proportions to reflect alternate scales of support remains an 
outstanding challenge.  

Suppose we consider n  sampled points data ( ; )I kαu , ( 1, 2,...,nα = ) within a certain 
neighborhood of an unsampled location 0u .  We assume that a prior mean facies proportion 

0kp�  is stationary over this neighborhood, then for the thk  facies category, the probability 0kp  

at location 0u can be estimated by indicator kriging (IK) as follows: 
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where kαλ  is the weight corresponding to the indicator data at location uα for category k, k=1, …, 
K.  The weights kαλ , α=1, …, n are determined by minimizing the kriging variance: 

2 2
0 0ˆ[ ]IK

IK k kE p pσ = −  

and thus reaching the simple kriging system: 

0
1

( , ) ( , ) 1, 2,...,
n

k I IC C nβ α β α
β

λ α
=

= ∀ =∑ u u u u  

where CI(uα,uβ), is the indicator covariance between locations uα and uβ. 

The extension of this framework to simulation, known as sequential indicator simulation (SIS), 
can provide a distribution of uncertainty of facies proportions at an unsampled location.  The 
general methodology for SIS is as follows: 

1. The entire space is gridded and all the grid nodes are visited via a random path 

2. At each grid node νu : 

(a) Search for nearby data and previous simulated values; 

(b) Perform IK to estimate the facies probability for each category at this grid node 
and build the cumulative probability function; 

(c) Draw a simulated category for the grid node based on the distribution function 
built in (b) above. 

Unlike IK which yields estimated proportions, SIS returns a simulated category.  Thus, while 
SIS constructs a local distribution of facies proportion, Monte Carlo simulation returns only a 
discrete value. 

The problem of order relations is not new to indicator methods.  The requirements to satisfy 

order relations are twofold: (1) 0 1kp β≤ ≤ and k β∀ ; and (2) 
1

1
K

k
k

p β
=

=∑ β∀ .  

Unfortunately, these two constraints are not automatically guaranteed under indicator kriging. 
Various corrections have been suggested to solve this problem. The logratio transformation of the 
facies proportions is attracting the interest of more and more geostatisticians due to its special 
properties. 

Logratio Formalism 

A logratio value, denoted by rk, for the facies proportion pk is defined as: 

log[ ], 1,..., 1, 1,...,k
k

q

pr k q q K
p

= = − +  

where the denominator pq can be any one fixed proportion among pk, k=1, …, K.  This transform 
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is reversible via: 

1,

exp( )  for  1,..., 1, 1,...,
1 exp( )

k
k K

l
l l q

rp k q q K
r

= ≠

= = − +
+ ∑
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1
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l
l l q

p
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Directly from the above formulas, we have 0 1kp≤ ≤  and 
1

1
K

k
k

p
=

=∑  for any given set of 

1 1 1{ ,..., , ,..., }q q Kr r r r− +  and thus satisfies the order relation requirements as mentioned above. 

Aitchison (1986) gave a detailed introduction on logratio analysis for compositional data. Some 
notable properties of the transform include: 

• There is a one-to-one correspondence between the original data (p1, …, pK) and the 
logratio vector (r1, …, rq-1, rq+1, …, rK), therefore any statement in terms of logratios can 
be expressed as an equivalent statement in terms of it original components. It turns out 
that after a complete circle of forward and back transformation, the result is independent 

of the selection of the denominator qp  in log k

q

p
p

⎡ ⎤
⎢ ⎥⎣ ⎦

 (Aitchison, 1999). 

• Logratio inference obtained from any subcomposition (p(1), …, p(d)), where d ≤ K , from 
the parent composition (p1, …, pK) will be exactly the same as the inference from the 
parent composition provided that we apply the same component as the denominator 
(Aitchison, 1986). For instance, suppose x1, …, xK denote the number of samples 
belonging to facies F1, …, FK , respectively; and x(1), …, x(d) denote, respectively, number 
of samples belong to facies F(1), …, F(d) and the set of F(1), …, F(d)  is a subset of F1, …, 
FK , that is { F(1), …, F(d)} ⊆{F1, …, FK}. Then the logratio rk for {F1, …, FK} is 

1

1
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k
K

l
kl
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and for {F(1), …, F(d)},  
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Therefore, rk=r(k) whenever F(k)=Fk and F(q)=Fq. This conclusion permits the application 
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of logratios on any known collection of facies collection, even in regions where the exact 
number of facies are unknown. 

• The logarithmic operation on the ratio pk/pq often leads to an approximately normally 
distributed data which satisfies the distribution assumption for linear or non-linear 
regression models and many other statistical tests. 

• The covariance structure of the original compositional data can be expressed in terms of a 
logratio covariance structure, determined by matrix  

[cov{log( / ), log( / )}] where , 1, ,k q l qp p p p k l K= =C …  

Further details about the logratio covariance structure are discussed by Aitchison (1986). 

Due to the above characteristics, logratio transformations and modeling is frequently applied in 
compositional data analysis in various fields such as ecology, geology and environmental science, 
where original compositional data is transformed to logratio values. Then a series of statistical 
analysis are applied on the logratio data: 

A linear or non-linear model can be built regarding the logratio values and against a series of 
regressor variables acting as factors that will determine the compositional variable. In this way, 
the conditional logratio values can be estimated based on the given regressor variables; further, 
the significance of each regressor can be tested. The fitted logratio values are then back 
transformed to get the estimated compositional value given the values of the regressors. 

In geostatistics, simple kriging can be applied on the known logratio values in the sampled area to 
estimate the conditional logratio value for an unsampled location and then back transformed to 
get estimated proportions. 

Application of Logratios to Facies Modeling 

Given the explicit control of order relations in logratio transformation, the possibility of applying 
the transform to facies proportion modeling was explored.  The following procedure was 
considered: 

1. Transform facies proportions to logratios. 

2. Kriging is performed to estimate the conditional logratio value at an unsampled 
location. 

3. Back transform the estimated logratio value to obtain the estimated facies proportion 
at the unsampled location. 

In Sequential Indicator Simulation with logratios transformed data, the procedures are the same as 
discussed above except for the following adjustments: 

1. For each of the randomly visited grid node, perform kriging on the logratios, for each 
of the K-1 proportions of interest.  These are then back transformed to obtain the 
estimated facies proportions, which are subsequently used to construct the 
conditional cumulative distribution function (ccdf). 

2. Perform Monte Carlo simulation (MCS) to draw a facies category and assign it to the 
grid node.  Add this to the database and proceed to the next location. 

Despite the above seemingly straightforward application, two critical issues remain in the 
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proposed implementation: (1) the zero proportions, and (2) non-linearity. 

Problems of Zero-proportion 

As previously discussed, at a point scale, facies data can be resolved into discrete categories and 
the application of an indicator transform is straightforward.  As we consider scaling this 
information to represent a block support, this categorical information transitions into a continuous 
property.  We can further imagine that if we consider a sufficiently small block volume, the 
possibility exists that we will have only one or several (but not all) facies represented.  This 
results in at least one facies whose proportion at that scale is zero. 

The presence of a zero proportion facies is only a problem in the logratio transform if that 
particular facies is chosen as the one represented in the denominator.  Recall that the transform 
is based on taking the ratio of pk relative to pq, where q is one of the K facies.  A zero proportion 
for pq leads to a non-existent logratio.  Of course, one could argue that the choice of the qth 
facies should be the one that does not yield zero proportions; however, in practice this may be 
unrealistic as this is dependent on the support volume of interest and it may be difficult to ensure 
that all locations will satisfy this constraint. 

One simple solution is to apply some arbitrary small value, such as 10-5 or 10-20, to substitute the 
zero facies proportions.  This arbitrary choice can lead to quite different logratio values.  
However, a consistent output is required in our analysis and modeling. According to repeated 
tests via simulated examples, we find that the logratios are preserved after a Gaussian or uniform 
score transform and this may partially solve the problem in case we apply a second 
transformation for subsequent modeling. However, in many common facies modeling 
methodologies, such as SIS, neither a Gaussian nor uniform score transformation is used; 
therefore such an inconsistency problem is hard to avoid if logratios are adopted.  The problem 
arises when averaging logratios with and without zeros; the back transformed values would be 
different. 

Non-linearity Problem 

A General View 

Recall in multiscale facies modeling, facies categories are scaled up to facies proportions at 
various supports, and kriging is applied to estimate facies proportion at an unsampled location. 
Each of these processes (up-scaling and kriging) involves a linear process applied on our sample 
data; however, the logratio transformation is not a linear mapping of the data to an alternate set of 
variables.  This non-linearity means that, in general,  

log log logk l k l

q q q q

p p p pa b a b
p p p p

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ ≠ ⋅ + ⋅⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

The consequence of this non-linear mapping means that after we obtain the mean of logratio 
values, we can not simply do the reverse transform to obtain the mean of the ratio pk/pq. Similarly, 
when we obtain an estimated logratio value using kriging, we can not obtain the correct estimated 
value of the ratio pk/pq or the proportion pk simply by a straightforward back transformation. 

The nonlinearity problem can be illustrated through a small example. Here assume we have only 
two facies and take two samples from location 1u  and 2u  with proportion for facies 1 as 11p  
and 12p  respectively. We plot the points of all the possible combinations of proportions 11p  
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and 12p  which result at the same estimated proportion 1p̂  and get the percentile contour as in 
Figure 2 (solid curves). Comparing this figure with the dot lines in Figure 2, which represents the 
percentile contour of linear averaging, we can see clearly the nonlinearity of the logratio back 
transformed proportion 1p̂ . 

 
Figure 2:  Percentile contour for estimated proportion of facies 1, 1p̂ . Each of the solid curves 
is the combination of 11p  and 12p  that gives an identical logratio back transformed estimated 

facies proportion 1p̂ . Each of the dotted lines is the combination of 11p  and 12p  that yields an 

identical arithmetic average of 1p . 

The differences (errors) between the estimated 1p̂  and the true 1p  (that is: 1 1
ˆp p− ) are 

obvious. Figure 3 gives the map of the errors vs 11p  and 12p  while Figure 4 gives the curves 
showing a series of the errors vs 11p  for each 12p ∈{0.05, 0.1, 0.15,..., 0.95}. From these two 
figures, we can see that the difference is spreading symmetrically as 11p  and 12p  diverges 
away from 0.5 and the range is within ( 0.5,0.5)− . By the way, in Figure 4, when 11p  takes a 
value between approximately 0.1 to 0.9, the error is relatively small, but still goes up to ±0.20.  
Errors are significantly greater (±0.50) when 11p  takes value less than 0.1 or greater than 0.9. 
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Figure 3:  Map of difference between 1p̂  and 1p . 
 
 

 
Figure 4:  Difference between 1p̂  (hatP1) and 1p  (meanP1). Each curve represents the 

difference 1 1
ˆp p−  vs 11p  for a specific value of 12p . 

3.2.2 Arithmetic Average versus Geometric Average 

Recall the back transform of the logratio as shown in Part 2 above: 

1,

exp( )ˆ  for  1,..., 1, 1,...,
1 exp( )

k
k K

l
l l q

rp k q q K
r

= ≠

= = − +
+ ∑

 

and 

1,

1ˆ
1 exp( )

q K

l
l l q

p
r

= ≠

=
+ ∑
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From this, we have 

1 1 1

1 1 log log log   for  1,..., 1, 1,...,
nn n

k k k
nk k

q q q

p p pr r k q q K
n n p p p

α α
α

α α αα α= = =

= = = = = − +∑ ∑ ∏
�
�

 

And back transformed to finally yield 

1

ˆ  for  1,...,k
k K

l
l

pp l K
p

=

= =

∑
�

�
 

where pkα is the proportion of the thi  facies at location uα, α=1, …, n, and n is the number of 
data, kp� 's the geometric average of pkα's in the sample. 

This process shows that, when we back-transform the arithmetic average of logratio of facies 
proportions, we obtain a standardized geometric average of the proportion, rather than the 
arithmetic average of the facies proportion. Applying logratios in either up-scaling or 
down-scaling process is therefore inappropriate. 

In the example with two facies and two samples above, we have  

1 2

ˆ k
k

pp
p p

=
+
�

� �
 

where k= 1, 2. Given a fixed estimated value 1p̂ a= , we find 

2

11 11
12 1 2

11 11

1 1
1 1a

a

p pp
p pξ−

− −
= =

+ ⋅ + ⋅
with 2

1 2a
a

ξ −=  

Notice now that 0ξ =  if and only if a=0.50. That is to say, given a fixed estimated value a  
for the back transformed estimated logratio proportion, the relation of the two sample proportion 
values 11p  and 12p  for facies 1 are nonlinear unless a=0.50. This is what we see in Figure 2. 

Such a problem also brings a strong effect on the kriging process. For example, if we estimate 

0ip  (proportion for thi  facies at position 0u ) using ordinary kriging, we get the estimate 
written as: 

0 1 1ˆ ...k k n knp p pλ λ= + +  with 
1

1
n

α
α

λ
=

=∑  

But applying logratios, we have: 

* *
0 1 1ˆ ...k k n knr r rλ λ= + +  with *

1
1

n

α
α

λ
=

=∑  

that is: 
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The reverse transform is given as  
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in general. By the way, the αλ 's and *
αλ 's ( 1, 2,...,nα = ) in the above are estimated via two 

different linear regression models independently. It seems difficult to identify the relationship 
between αλ 's and *

αλ 's which is necessary if we want to model and fix the difference (errors) 

between 0ˆ ip  and *
0ˆ ip . 

Conclusion 

The benefit of applying the logratio transform to this problem of facies proportions that naturally 
describe the facies composition at various volume supports are twofold: (1) it explicitly honours 
the non-negative requirement for estimated facies proportions, and (2) it reproduces the constant 
sum constraint that is inherent to honouring the order relations.  Despite these benefits, the use 
of a linear approach, such as kriging, to directly estimate and model the facies proportion yields a 
bias. Furthermore, back transforming the arithmetic average of logratio values leads to a 
standardized geometric average of facies proportion, which is completely different from the 
arithmetic average that is desired in the up-scaling process. Further, the zero proportion problem 
is hard to avoid when no normal score or uniform score transformation is adopted. These 
problems make it inappropriate to apply logratios in the multiscale facies modeling. 

Some Future Works 

It is concluded in this paper that logratio transformation is not an appropriate approach in 
multiscale facies modeling and we need to consider other approaches to cope with the problems 
regarding the negative proportion and sum constraints. 

• Compositional kriging (CK) suggested by de Gruijter et al. (2001) is one choice. The 
essential idea is similar to ordinary kriging, but all the constraints are simultaneously 
accounted for via a corresponding Lagrange multiplier. The kriging weights are estimated 
by minimizing the kriging variance subject to all the constraints. A further study on the 
application of CK in multiscale facies modeling will be valuable in solving our problems. 

• Another important alternative is posteriori processing. Here we set the kriging estimated 
facies probability ˆ IK

kp ν  at the unsampled location νu to zero if it is negative and then 
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reset the estimated facies probability *ˆ kp ν  according to the formula below: 

*

1

ˆˆ    where 1, ,
ˆ

IK
k

k K
IK
l

l

pp k K
p

ν
ν

ν
=

= =

∑
…  

After posteriori processing, we obtain the estimated facies probabilities which fully 
satisfy the order relation requirements. A relative adjustment is made on the SIS 
algorithm by adding the posteriori correction after indicator kriging and before Monte 
Carlo simulation step at each of the randomly visited grid nodes. Further work will be 
needed to solve various technical problems in applications of this posteriori correction. 
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