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A drawback of Sequential Indicator Simulation is the uncontrolled transitions between classes, 
which translates in the patchiness of high and low values areas in the resulting realizations.  The 
full cokriging approach has been proposed to solve this disadvantage; all direct and cross 
indicator variograms would be used.  This approach should introduce some order in the 
interclass transitions by including the interclass cross correlation information; however, the 
Linear Model of Corregionalization does not provide a satisfactory fitting for indicator cross 
variograms of extremely separated thresholds.  The alternative proposed in this paper is to use 
only the corregionalization information of the two closest thresholds to the one that is been used 
for the conditional CDF estimation.  This alternative has been implemented in the SISIM_adj 
program.  The implementation details, the results using synthetic and real data and the 
performance comparison of this alternative with the direct indicator simulation and full indicator 
simulation are shown in this paper. 

Introduction 

Indicator based Kriging and simulation methods suffer several shortcomings and limitations, 
these have been documented by several authors (Chilès and Delfiner, 1999; Christakos, 2000; 
Emery and Ortiz, 2004).  A particular unwarranted feature in the results of traditional Sequential 
Indicator Simulation (SIS) for continuous variables is the geologically unrealistic, disordered and 
uncontrolled transitions between classes of low and high values.  This is caused by the non-
parametric description of the cumulative distribution function (cdf) using the indicator cumulative 
probability values for several classes and the limitations of indicator direct variograms to provide 
information about the inter-class cross correlation. 

The implementation of full co-kriging algorithm in Sequential Indicator Simulation has been 
suggested to account for the interclass correlation and, in this way, to control the interclass 
transitions and sequence.  Nevertheless, the short distance continuity of indicator cross 
variograms becomes very pronounced as the difference between thresholds increases.  In this case 
the linear model of corregionalization provides a very poor fit to experimental indicator cross 
variogram for widely separated cut-offs. 

In view of this limitation, it is proposed the implementation of a cokriging system considering 
only the indicator cross variograms between the closest upper and lower threshold to the one 
which cdf value is being estimated. 

 



 405-2 

Theoretical Framework 

The indicator transform for a continuous variable is defined in relation to a threshold value, or 
cut-off, py  as: 
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Where p is the cdf value corresponding to the threshold py . When the stationarity hypothesis is 
assumed, the expected value of the indicator transform defines the marginal cdf of the variable 
Y(u), regardless the location u: 
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 Using ordinary or simple Kriging, and provided the indicator direct variograms or covariances, 
this global cdf can be conditioned by the n surrounding data values at any location u and for 
several py  cut-off’s. The simple indicator Kriging SIK system of equations is expressed as: 
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The resultant SIK weights, ( ; )u pβλ , are then used to estimate the conditional local probabilities 
by the expression (Deustch and Journel, 1998): 
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The construction of such conditional cumulative distribution functions by the indicator kriging 
approach often leads to order relation deviations. This means that the discrete probabilities 
independently estimated for each threshold can lead to a ccdf models that can be decreasing for 
certain intervals, or can be lower than zero or bigger than 1. These order relation deviations can 
be corrected by simple methods (Deustch and Journel, 1998). 

Traditional Sequential Indicator Simulation commonly uses simple indicator Kriging to build a 
local ccdf model which is used to draw a random value by Monte Carlo Simulation.  This value is 
added to the data set and used in the construction of the ccdf’s of the remaining nodes. 

 As the discrete probabilities are estimated independently for each cutoff and using indicator 
direct variograms, the information about the interclass correlation is not included, thus in SIS 
results maps classes appear as superimposed patches of low and high values with neither 
gradation nor order in their sequence. 

The implementation of the full indicator cokriging (coIK) is supposed to palliate this problem, 
since it includes all the information available from the indicator direct and cross variogram for 
every pair of threshold combinations. The coIK ccdf estimate for a given cut-off 

0py  is expressed 
as (Deustch and Journel, 1998; Goovaerts, 1994): 
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And the system of equations is written: 
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coIK requires the simultaneous modeling of a P P×  matrix of indicator direct and cross 
variograms: 
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This matrix must be positive semi-definite to ensure that the variance of any linear combination 
of the transform ( ; )pI u y  is non negative (Journel and Huijbregts, 1978). The Linear Model of 
Corregionalization (LMC) allows the fulfilling of this condition by modelling all the direct and 
cross variogram as a linear combination of a limited number of variogram functions (Goovaerts; 
1994, 1998): 
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Where ( )Ig h is a permissible variogram model with standardized sill, and lB is a P P×  matrix 

containing the sill contributions, l
ppb ′ , of the model ( )Ig h  for each indicator direct and cross 

variogram. 

To assure the positive definiteness of the LMC, the matrix lB  must be positive semi definite and 
the same permissible variogram models, ( )Ig h , must be fitted to direct and cross variograms. 

However, as mentioned above, the LMC fails to reproduce the extreme continuity of indicator 
cross variograms for widely separated cut-off’s. This excessive continuity can not be fitted by any 
permissible model, Moreover the changing shape of variograms, from exponential like direct 
variograms to Gaussian type cross variograms, difficult or hinder the fitting of a valid positive 
semi-definite correlation matrix under the LMC approach. 

This extraordinary variogram continuity can be explained in regard to the indicator cross 
variogram, which can also be expressed as: 
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Where and u and u+h are data locations separated by a vector h. The indicator cross variogram 
increases only if there is a class transition in the same direction for both cut-off’s,  and p ky y . 
This is, when the next conditions are fulfilled: 
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But as the difference between the thresholds and p ky y gets bigger, these conditions are seldom 
satisfied, particularly when the nugget effect is very low and the variable is very continuous or 
approach to the bigaussian model. Then, the experimental variogram yields a long tail of zero or 
close to zero values for the close range. This extreme continuity is often more pronounced than 
the continuity of the Gaussian variogram model, and the LMC provides a very coarse description 
of it when the complete matrix of direct and cross variograms is considered. 

As the LMC is inadequate for fitting the full variogram matrix, and being it the only model of 
corregionalization available, the adjacent Cut-offs Indicator Cokriging (acoIK) is a viable and 
practical alternative for introducing the interclass correlation information in the SIS algorithm. 

For each one of the p cut-offs, the correspondent ccdf value estimation by acoIK requires only the 
LMC of the indicator direct and cross variograms corresponding to the adjacent thresholds 

0 1 0 0 1
,   and p p py y y

− +
, this is, two 2 x 2 variogram matrices for the first and last cut-offs, and p-2 3 

x 3 matrices for the intermediate cut-offs. The modeling of each one of these matrices is 
performed independently, although some consistency between the resultant p LMC should be 
kept. Restricting in this way the extent of variogram matrices allows a satisfactory fitting of the 
LMC, without the hindrances of fitting a single full variogram matrix. 

The acoIK system is similar to full coIK but restricted to 0 01 to 1p p− +  thresholds for each cut-
off 0p  (Goovaerts, 1994): 
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And the estimate is calculated by: 
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Order relation issues are expected after the ccdf estimation for all cut-off’s, but they can be 
solved in similar way as the indicator Kriging results. Once a valid ccdf is build, this can be used 
to draw a random number, which should carry the information of the inter-class correlation if the 
acoIK is implemented in the indicator simulation algorithm. 

Status 

The sisim_adj program exists and has been used for a number of numerical experiments.  The 
motivation for this approach is the impossibility of using an LMC for full cokriging in SIS (the 
program for that is also available, but has limited applicability).  Testing and verification of the 
results was ongoing at the time of this paper going to press.  It is unclear that including data from 
adjacent cutoffs improves the unnatural variations in SIS. 


