
406-1 

TISIS: A Program to Perform Full Indicator Cosimulation 
Using a Training Image 

 
Steven Lyster and Clayton V. Deutsch 

 
Centre for Computational Geostatistics 

Department of Civil & Environmental Engineering 
University of Alberta 

A training image (TI) provides all required spatial statistics to inform the spatial law of a random 
function (at the grid spacing of the training image).  A TI is normally used with a multiple point 
statistics (MPS) based algorithm; however, any algorithm can be used.  This paper documents a 
full indicator cokriging approach with spatial statistics inferred directly from a training image.  
The results of this approach provides useful models, base case results for comparisons, and 
advanced starting points for iterative MPS algorithms.  There are no problems associated with 
fitting a valid model of coregionalization between all direct and cross variograms; the set 
extracted from the TI is positive definite.  A GSLIB-like program is documented. 

Introduction 

Characterization of natural resources such as petroleum reservoirs or complex ore deposits often 
necessitates the creation of a geologic model of rock types before modeling of continuous 
properties such as porosity, permeability, and ore grade.  Such a model is required because in 
many cases the properties of interest vary widely from rock type to rock type, or facies to facies.  
The resulting model, integrating geologic uncertainty as well as uncertainty within facies, should 
give a better idea of the total uncertainty within a model (Deutsch, 2002). 

A common method used to build a rock type model is to code the facies as indicators, 
characterize the spatial structure of each indicator with variograms and/or covariance functions, 
and then perform sequential simulation. This method relies on the assumption that the facies all 
have multivariate Gaussian spatial structure. 

In the typical implementation, the indicator variograms of all facies are calculated separately; 
there is an implicit assumption that the different rock types are independent of one another. In 
most cases this is not true, and there are in fact spatial relations between the facies.  The difficulty 
in producing a licit linear model of coregionalization including all direct and cross variograms (or 
covariances) leads to the simplification.  It is often not worth the effort to produce a valid LMC 
when the number of different facies exceeds three. 

Training images are becoming more common as multiple-point geostatistics gain in popularity.  
Most high-order spatial structures are too complex to characterize as functions, so conditional 
probabilities and other such statistics are calculated from a training image deemed fully 
representative of the area in question.  With such a resource available, it is possible to derive 
whatever information is desired.  Direct calculation of covariances and cross-covariances for all 
facies is straightforward with no fitting of functions, and the resulting model of spatial structure is 
guaranteed to be positive semidefinite as there is at least one realization which honours all of the 
statistics (the training image). 
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Using a training image to derive all relevant two-point statistics may be desirable for several 
reasons. Compared to multiple-point methods, sequential indicator simulation is very fast; 
features such as locally varying proportions and soft secondary data may be easily integrated; 
conditioning data is explicitly honoured; and with all cross-covariances included in the kriging 
equations, the relations between the facies should be correct. The realizations resulting from full 
indicator cosimulation could be used for comparison to MPS methods, initial images for iterative 
MPS algorithms, or as final facies models. 

Indicator Simulation 

The expression of facies as mutually exclusive coded indicators may be accomplished through the 
transform (Deutsch, 2002): 
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This transform must be applied K times at each data location, where K is the number of different 
facies. By coding the information in this way, an exhaustive and exclusive distribution is created; 
all locations have a single facies which occurs at that point (and therefore has an indicator value 
of 1), and all other facies do not occur at that particular location (and therefore have indicator 
values of 0). The expected value of an indicator is equal to the global proportion or probability of 
k, and is denoted as Pk. The variance of a categorical indicator is equal to Pk(1-Pk). 

Indicator values may be estimated at unsampled locations, as with any other variable. The linear 
estimate may be expressed as (Chiles and Delfiner, 1999): 

 ( ) ( )[ ] k

n

i
kii PPkuIkuI +−⋅= ∑

=1

* ;; λ  (2) 

where the ui‘s are sampled or previously simulated locations, and the λi’s are the linear estimation 
weights. The optimal weights may be found by simple indicator kriging: 
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Indicator kriging must be performed for all k = 1,…,K facies to determine the full conditional 
probability density function (cpdf). While indicator kriging minimizes the estimation variance, 
the actual variances themselves are not used in indicator simulation. 

After the full conditional distribution has been created, order relations problems must be 
corrected. The standard method for this is to set any negative probabilities to zero, and then 
divide each conditional probability by the sum of the cpdf values; this ensures the distribution 
sums to one. 

Once a cpdf has been built, the values are used to create a conditional cumulative density function 
(ccdf); a random number between zero and one is drawn; and the corresponding indicator value in 
the ccdf is set as the rock type at location u in the model. The next location is then simulated in 
the same way; this continues until the entire model has been populated. 
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Cosimulation 

Indicator values other than the one being estimated are not usually used for sequential indicator 
simulation. Because the categorical indicators are mutually exclusive, the collocated covariance is 
always zero between facies; this precludes the use of collocated cosimulation, which is a popular 
option for integrating multiple data types. Also, as there are often four or more facies types, a 
large number of cross-variograms would have to be calculated in addition to the direct; this 
discourages most practitioners and is often not worth the effort. With the use of training images, 
the inference of cross-covariances for complex relations is not a problem; therefore, full indicator 
cosimulation may be undertaken. 

Considering all k facies at all n data locations within the search radius, the linear estimate now 
becomes: 
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where k̂  is the facies for which the probability is being estimated. The optimal estimation 
weights may be found by solving the simple indicator cokriging system: 
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It is notable that in Equation 5, the left-hand side matrix of the cokriging system is identical for 
all indicator values; only the right-hand side covariance vector must be changed to solve for the 
linear weights of other indicators. Once the full cpdf has been determined, the sequential 
simulation proceeds as described above. 

TISIS Program 

The program that has been written to perform full indicator cosimulation with covariances and 
cross-covariances derived from a training image is called TISIS (Training Image Sequential 
Indicator Simulation). The basic framework is similar to the GSLIB programs (Deutsch and 
Journel, 1998). The user is required to enter the parameters for simulation into a parameter file; 
all input and output files follow the standard GSLIB file structure. The procedure used by TISIS 
is described below. 

Read Parameters 

Upon executing the program, the user is prompted for the name of a parameter file; this name 
defaults to tisis.par if nothing is entered. If the default filename is used and no file is found, 
a generic template parameter file is created. The parameter file is laid out as follows: 

 
                   Parameters for TISIS 
                   ******************** 
 
Line START OF PARAMETERS: 
  1 tifile.dat                    -Training Image file 
  2 1                                -Column for TI data 
  3 256  256  128                    -Size of TI field 
  4 conddata.dat                  -Conditioning data file 
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  5 1  2  0  3                       -Columns for X,Y,Z,Data 
  6 1                             -Number of multiple grids 
  7 2  2  2                          -Discretization of grid 
  8 5                             -Number of codes/facies 
  9 0  1  2  4  5                    -Indicators for codes/facies 
 10 0                             -Number of codes to freeze 
 11 initial.out                      -If >0, file with initial image 
 12 1                                -Column for data 
 13 0  1                             -Codes to freeze 
 14 tisis.out                     -Output file 
 15 10                               -Number of realizations 
 16 256  5.0  10.0                   -nx xmin xsiz 
 17 256  5.0  10.0                   -ny ymin ysiz 
 18 128  0.5  1.0                    -nz zmin zsiz 
 19 2                             -0=Global proportions,1=local,2= from TI 
 20 0.1  0.1  0.2  0.4  0.2          -If 0, global pdf 
 21 localpdf.dat                     -If 1, local pdf file 
 22 1  2  3  4  5                    -Columns for local pdf values 
 23 12                            -Maximum data to use 
 24 515                           -Number of points in template 
 25 template.dat                     -File containing point offsets 
 26 1  2  3                          -Columns for X,Y,Z offsets 
 27 69069                         -Random number seed value 

 

The first three lines of parameters define the training image. The TI may be three-dimensional 
and the size is limited only by the memory requirements of the data. The next two lines specify 
the file containing the conditioning data, as well as the columns for the coordinates and facies 
code; if the conditioning data file does not exist, the realizations will automatically be 
unconditional. Line 6 defines the number of multiple grids to use; the next nmg lines define the 
discretization of the grids (shown as Line 7 here). The grids must be in order from coarsest to 
finest. If the value in Line 6 is zero, then there should not be any lines specifying the grids. 

Line 8 specified the number of rock codes or facies types contained in the simulation field, while 
Line 9 contains the codes used to identify the different facies. All data within the training image, 
conditioning data, and multigridding data files must be identified on Line 9, or an error will 
occur. 

Line 10 specifies the number of rock codes to freeze. If a hierarchical simulation is being 
performed, Line 10 will have a number greater than zero and Line 11 will specify the input file 
containing the initial realization; this file will be read in, then the specified codes frozen in place 
and the remaining locations repopulated. Line 12 contains the column number for the data in the 
initial image file. Line 13 contains the indicators for the codes to be frozen.  

The desired name of the file for output is entered on Line 14. If the file already exists, it will be 
overwritten. The number of realizations is given on Line 15; any number may be entered, up to 
the practical limits based on CPU time and storage. The simulation grid is specified on Lines 16 
through 18. 

The pdf option is on Line 19. If this value is 0, then Line 20 specifies the global Pk values for 
each rock code; if the option is set to 1, a file containing local pdf values for every facies must be 
given in Line 21, with the columns stated on Line 22; if the pdf option is set as 2, a global pdf is 
used and calculated directly from the training image. 
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Line 23 specifies the maximum number of data to retain for the indicator cokriging. There is no 
explicit maximum set, but fewer retained data leads to faster simulation speeds and often does not 
adversely affect the quality of realizations. The number of points in the statistical template is on 
Line 24. The file with the point offsets is designated on Line 25, and the columns for X, Y, and Z 
coordinate offsets are on Line 26. The template file must contain at least as many lines as the 
number of points specified, though fewer may be used than are in the file if so desired. 

The initial random seed value for the simulation is given on Line 27. One the parameter file is 
read in, the preparation for simulation is executed. 

Acquire Training Image 

The first step once the parameters have been read in is to read in the training image information. 
The size of the TI is specified by the user, and is not explicitly limited. The training image must 
be at the same resolution as the field to be simulated for the results to be valid; this must be 
checked by the user. If there is an indicator code within the TI file that is not one of those 
specified in the parameter file, the programs returns and error message and stops. An error is also 
returned if the TI file is not found. 

Read Statistical Template 

A user-specified template is utilized to calculate and store all necessary statistics. The X, Y, and 
Z offsets of the template are read from a file. If the column number given for the Z offset values 
is less than one, the template is assumed by the program to be two-dimensional and all Z offsets 
are set to zero. 

Find Unique Lag Vectors (Offsets) 

To speed up calculation of statistics and reduce storage requirements, only unique lag vectors are 
used. To ensure all vectors are unique, first all vectors are pointed in a “positive” direction: the X 
offset between the two points must be greater than or equal to zero; if it is equal to zero, the Y 
offset must be greater than or equal to zero; if both the X and Y coordinates of the two points are 
the same then the Z offset must be greater than or equal to zero. If the lag vector is oriented in a 
negative direction then it is reversed and pointed in a positive direction instead. 

Once the positiveness of the lag vector is ensured, each combination of points in turn is compared 
to all previous unique vectors. The comparison is done by seeing if the X, Y, and Z offsets of the 
vector are identical to any of those already stored. 

While the process of finding all unique lag offsets (or vectors) can be somewhat cumbersome, it 
is very fast and greatly reduces the number of covariances and cross-covariances that must be 
calculated and stored. 

Build Local PDF 

A local pdf model must be built, regardless of the pdf option specified in the parameters. If the 
pdf option is not 1, then the local pdf values are identical to the global ones; otherwise, the local 
proportions are read in from the specified file. If the file is not found (and the option is 1), then an 
error is returned and the program stops. The columns for the local pdf values for each code may 
be specified as desired. Technically, the pdf values do not even need to sum to 1.0; the program 
should function if the proportions sum to some other value, but this could lead to erratic 
behaviour in the estimation. 
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Calculate Statistics 

Next, the TISIS program scans the training image field and calculates all of the required 
covariances and cross-covariances. Variograms are not used because cross-variograms are 
symmetric whereas cross-covariances do not necessarily have this property (Journel, 1978, p.41). 
Covariances and cross-covariances are only calculated for the unique offsets/lag vectors found 
earlier. The values are found by using the following equation: 
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The Pk and Pk’ values are taken from the training image for use in Equation 6, regardless of the 
specified pdf option. In the cases where k = k’ the equation becomes that for direct covariance. 

Get Conditioning Data 

The final step before the loop over all realizations begins is to read in the conditioning data from 
the specified file. If the file is not found, all realizations are unconditional. The conditioning data 
locations are not visited in the spiral path, and remain unchanged from one realization to the next. 
The columns for the X, Y, and Z coordinates as well as for the rock code may be specified. If the 
column for the Z coordinate is less than 1, then the data are assumed to be two-dimensional and 
the block index for all conditioning data is set to one. 

Develop Spiral Path 

The path followed for simulation begins at the closest points to the conditioning data, and then 
moves further away. Ties in the minimum distance to conditioning data are broken by small 
random numbers. Conditioning data are not included in the spiral path, ensuring exact 
reproduction. 

To implement the multiple grid option those points which fall on the finer grids have very large 
values added to their distance. This guarantees that the simulation will visit the locations on the 
coarsest grids first, spiraling away from the conditioning data on the larger grids before filling in 
the remaining locations, once again spiraling away from conditioning data. 

Simulate Values 

Visiting the nodes in the order developed by the spiral path subroutine, sequential indicator 
cosimulation is performed. A subroutine first finds the existing data (conditioning or previously 
simulated) that is within the statistical template defined earlier. The number of data found is 
limited to the parameter specified by the user. 

One the data locations are known relative to the point currently being simulated, the relevant 
statistics are extracted from the statistics found earlier and stored. If a lag vector to a point is in a 
negative direction, the offsets are reversed to find the covariances and cross-covariances. The 
left-hand side kriging matrix is built, and is the same for estimating the probabilities of all facies 
(as mentioned above for Equation 5); right-hand side matrices are built for each rock code. 
Simultaneously solving the kriging systems yields the cpdf. These values are then modified to 
account for local probabilities by using Bayesian Updating (Deutsch, 2002, p.201): 
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If no local pdf model is being used, then the Pk values are the same locally as globally. Once the 
updated probabilities are found for each indicator, the cpdf is corrected for order relations and the 
ccdf is created. A simulated value is then drawn, and the process repeats at the next point in the 
spiral path. 

Write to File 

After the grid is fully populated, the results are output to the specified file in standard GSLIB 
format. The X, Y, and Z coordinates are also output.. The procedure then repeats for the 
remaining realizations, from developing the random spiral path onwards. 

Examples 

Following are several examples produced by the TISIS program with three different training 
images. Realizations using conditioning data, locally varying proportions, and multiple grids are 
also shown. 

Channel TI, Two Facies 

Figure 1 shows a training image that is 256x256x1 blocks in size, has two indicator values, and 
contains fluvial channel structures. Below the TI are shown realizations produced using TISIS, 
with varying numbers of retained data in the kriging equations (2, 4, 8, and 12). It is interesting to 
note that the realizations do not appear to significantly improve as more previous nodes are used. 
In fact, as more data are used, the randomness of the simulation field increases. 

Channel TI, Three Facies 

The same TI as in Figure 1 is again shown in Figure 2; however, in this case there are two distinct 
channel facies. TISIS realizations which used varying numbers of previous nodes are shown 
below. In this example it is quite clear that retaining more data makes the simulation noticeably 
worse, with much more randomness and noise. 

Complex TI, Four Facies 

Shown in Figure 3 is a training image with four different indicators, which have very complex 
relations; below the TI are TISIS realizations which once again retain 2, 4, 8, and 12 previous 
data at each point. As before the simulated field gets progressively worse as more data are 
retained; with 12 data the main structures of the TI are just barely visible. Looking at the cases 
with fewer retained data, the directions of continuity and relations between facies are reproduced 
reasonably well for such a simple algorithm. 

Channel TI, Three Facies, Conditioning Data 

The training image in Figure 4 is the same as in Figure 2. The TISIS realizations in Figure 4 
were created using conditioning data. This conditioning was in the form of four vertical strings of 
data simulating drillholes or well logs, and is shown next to the TI. The realizations appear to be 
fairly good near the conditioning data, but very near the midpoint between strings of data there 
are discontinuities and/or randomness. This is caused by the spiral path, which starts near the 
conditioning data; close to the data, the simulation reproduces the features well. However, after 
so many nodes have been informed the paths from each of the strings of conditioning data begin 
to interact; at this point halfway between the data the artifacts occur. 
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The ideal number of retained data appears to be different when using conditioning data. Recall 
the earlier example shown in Figure 2, in which the realizations using only 2 and 4 retained data 
were visually much better than those retaining 8 or 12. With conditioning data, the spiral path is 
much more continuous; as such, the spatial structure from the training image is reproduced near 
the data, and more data need to be retained to ensure the conditional pdf is fully informed. In 
Figure 4 the “best” number of previous nodes to retain for simulation appears to be in the range of 
8-12; the discontinuities are least pronounced at this level. 

Channel TI, Three Facies, Locally Varying Proportions 

Shown in Figure 5 are plots of local proportions for each of the three facies in the same channel-
based TI as above. This local pdf model was created by performing a local search of the TI to find 
the proportions of the different indicator codes. In general, the background facies occurs with the 
highest proportions nearly everywhere; the black channel facies has its highest probabilities of 
occurring in the middle area of the field; and the blue facies type has two distinct zones of higher 
proportions, one near the top of the field and one about a third of the way up from the bottom. 

Realizations produced by TISIS using these locally varying proportions are shown in Figure 6. 
The local pdf obviously has a significant impact on the results: the simulated “channels” present 
themselves primarily in the areas where they have the highest pdf values. While the actual local 
mean model used may not be ideal for a real case, as an example of how the program reproduces 
the local model the results are quite good. 

The number of data retained in the simulation appears to have less impact using a local pdf 
model. While more points once again results in more noise (as was evident in the earlier 
examples), overall there is less difference in the realizations based on the number of points 
retained. 

Channel TI, Two Facies, Multiple Grids 

Figure 7 shows the same training image with two facies as the first example in Figure 1. Below 
the TI are four TISIS realizations, each made with a different number of multiple grids as 
specified in Line 6 of the parameter file. All of the realizations used six retained data for building 
the ccdfs. While the results are not visually striking, there is more east-west continuity in the 
realizations which used multiple grids. As the time for simulation does not increase noticeably 
when this option is being used, even such a subtle improvement is worth effort. 

Discussion 

In the examples several interesting features may be seen. The use of so few previously simulated 
nodes for the best reproduction of features in the first few examples is very surprising. This could 
be caused by the large size of the kriging matrices; retaining eight data with three facies results in 
a 24x24 left-hand side matrix. The size of this matrix, and the number of terms in the linear 
estimate, then in turn results in more reliance on the Pk values and hence more randomness. This 
could also explain why realizations retaining more data begin to go towards randomness more 
quickly as more facies are added. 

The ease with which conditioning data, local proportions, and multiple grids may be implemented 
is a product of the two-point simulation method. Kriging and sequential simulation have been 
well refined, and as such this methodology is accepted and widely used. The goal of the 
implementation in TISIS, which uses all covariances and cross-covariances, is to take two-point 



406-9 

indicator simulation as far as it may possibly go: no further steps may be taken to use more 
information without moving to a multiple-point statistical method. 

The workflow implemented here to perform full indicator cosimulation is meant to be used as a 
complement to multiple-point simulation. All relations between the facies should be properly 
reproduced, producing ideal images for MPS post-processing, comparison to MPS simulations, or 
standalone realizations using an alternative to strict MPS. 
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Figure 1: 256x256x1 training image with two facies (top); TISIS realizations using different 
numbers of retained data (lower). 
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Figure 2: 256x256x1 training image with three facies (top); TISIS realizations using different 
numbers of retained data (lower). 
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Figure 3: 256x256x1 training image with four facies (top); TISIS realizations using different 
numbers of retained data (lower). 
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Figure 4: 256x256x1 training image with three facies (top left); conditioning data (top right); 
conditional TISIS realizations using different numbers of retained data (lower). 
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Figure 5: 256x256x1 training image with three facies (top); Locally varying proportions of the 
different facies in the training image. 
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Figure 6: 256x256x1 training image with three facies (top); conditioning data (top right); TISIS 
realizations using the LVM model shown in Figure 5, retaining different numbers of data (lower). 
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Figure 7: Multiple-grid example. 256x256x1 training image with two facies (top); TISIS 
realizations using different numbers of multiple grids (lower). 


