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Reservoir flow simulation involves complex geometry and geology.  The use of unstructured grids 
is advantageous in resolving important features such as faults, channels and deviated wells. It 
also permits static and dynamic reservoir properties to be resolved at the required fine scale 
resolution near well bores and along faults, while coarser resolution is often acceptable far away 
from wells.  Inherent to any inference modeling approach is the ability to efficiently search for 
nearby relevant data and in the case of simulation, any previously simulated values. Different 
search algorithms have been successfully employed for regular grids; however, under the context 
of an unstructured grid, these methods may prove to be inefficient and impractical.  There is a 
need to develop a robust, efficient searching method that can quickly search for nearby 
information within an unstructured grid. 

This paper examines the use of a quadtree search for estimation and simulation.  This is initially 
tested on a regular grid and its efficiency is compared against the super block search. 
Interestingly, the super block search performed just as efficiently in estimation and even faster 
than the quadtree search in simulation. 

Introduction 

Reservoir simulation is often implemented on unstructured grids to resolve the complexity of 
reservoir geometry. Developing a three dimensional non-Cartesian model enables us to quantify 
reservoir properties with greater precision than was previously possible. The recent reservoir 
simulators must be capable of accurately representing these complexities. 

Current simulation algorithms such as sequential Gaussian simulation (SGS) (Isaaks, 1990) are 
unable to consider multiscale data on a regular grid, much less on an unstructured grid. The 
implementation of direct sequential simulation (DSS) is proposed to solve this problem (Manchuk 
et. al., 2005), however searching for nearby relevant data remains an issue. 

A brute-force approach could be implemented for any type of grid; however, this type of search 
means to consider every possible solution of a problem until a solution is found, or all possible 
solutions have been exhausted. Generally, brute force refers to any method that does not rely on 
any intelligence, but tries every possible solution to find the best answer. This method is 
applicable for small number of data but becomes time-prohibitive when a large data set is 
considered. 

To counter the inefficiencies inherent to a brute force search strategy, numerous search 
algorithms have been proposed for geostatistical estimation and simulation.  The most common 
strategies are implemented in the GSLIB software (Deutsch and Journel, 1998), and include the 
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super block search, spiral search and the octant search. The super block search algorithm is used 
to efficiently find non-gridded data. In this technique a template grid is constructed according to 
the search ellipsoid and centered at the point of interest. Then all data which are located in the 
template grid are found and considered for estimation/simulation.  In the case where data are 
located on a regular grid, the spiral search is an efficient alternative (Deutsch and Journel, 1998). 
In this method the search starts at the location of estimation and follows the spiral path to find the 
relevant data. The search is terminated when the maximum number of data searched or the search 
radius is reached.  Another common search strategy is the octant search, which is useful if there is 
significant clustering of the samples. For this search, the search neighborhood is divided into 
eight equal sectors. If there are too many empty adjacent octants around a block then that block 
will not be estimated.  Zanon (2004) discusses each of these search strategies in more detail and 
examines their impact on simulation time. 

Despite the fact that the conventional search methods found in common geostatistical software 
works quite efficiently for a regular grid, the extension to unstructured grids poses several 
challenges.  Firstly, the data for an unstructured grid will consist of multiscale, irregularly shaped 
support volumes, any method that is suited for finding data on a regular grid/spacing will likely 
be inadequate.  Secondly, a template approach presumes that the grid can be resolved into some 
common pattern that is easily translated throughout the model area; however, the flexibility 
permitted by an unstructured grid is inconsistent with finding any local templates that could be 
applied throughout the domain. 

Implementation of conventional searching algorithms commonly found in existing geostatistical 
modeling methods to an unstructured grid is certainly an option.  Another option is to consider 
other search strategies that have been used in the computer graphics and gaming industry for their 
robustness and efficiency.  This paper considers one such strategy: search trees.  Specifically, we 
examine the use of search trees for estimation and simulation. The following section provides 
some background on tree-based search methods.  A small example of how a quadtree search 
works is presented.  This is then implemented as a subroutine for kriging and simulation and a 
small comparative study is presented. 

Tree-based Search Methods 

Consider the number of data point distributed spatially in area A. Tree based methods index data 
in a way that can be easily accessible when they are needed. The tree structure is based on the 
location of data in space and the specification of a root node (or the initial tree’s root); the root 
node contains all sub-nodes. Each node could be either a leaf or a parent node. Parent nodes have 
one or more child nodes and all children of the same node are siblings (see Figure 1). Data points 
are assigned to the leaf nodes. 
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Figure 1:  Schematic illustration of Tree data Structure. 

Depending on the area decomposition and the way data are indexed, several tree-based data 
structures are developed and used in computer science applications. Some of the most useful of 
them are discussed as follows. 

Quad-trees 

These types of structures are used for two dimensional data spaces. In this structure the regions 
are defined by squares in the plane, which are subdivided into four rectangles if any regions 
contain more than a specified number of data inside them. So each internal node in the underlying 
tree has four children. Figure 2 shows 10 data point in a square region. The space is divided in a 
way that each region has a maximum of one data. The location of each data is tree is also shown. 
Data in smaller squares are located in the lower tree’s layer. The process of point insertion and 
deletion is fairly simple in quad-trees. This kind of structure is commonly used in image 
processing techniques and its advantage in memory storage is highly appreciated. 

 

 
Figure 2:  Data indexing using Quadtree. On the left: The space is recursively divided into four 
squares. On the right:   The quadtree structure showing the location of data in tree.   
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Octrees 

In case of 3-D data, the octree data structure can be applied in order to index data. The main 
concept of this method is the same as a quadtree, but regions are defined by cubes in 3 
dimensions, which are subdivided into eight equal-sized cubes (like an octant) for any regions 
containing more than a single point (Figure 3). So each internal node in the underlying tree has 
eight children and, like quad-trees, point insertion/ deletion is simple. 

k-d trees 

This search algorithm is designed to use in multidimensional spaces. Regions are defined by 
hyperrectangles which are subdivided into two hyperrectangles by cutting a hyperplane through 
the median point, for any regions containing more than two points. So the underlying tree can be 
made a binary tree; compared to the octree structure, it may have more layers or depth which 
considerably affects the efficiency of searching through the tree. Although some variants were 
proposed to help, such as, cutting along the longest side instead of along each axis recursively, 
the octree is generally preferred. 

 
 
Figure 3:  Octree Data Structure. 3-D data space (left end) is divided into eight equal sized cube 
and recursively repeated to have maximum one point in each cube (right end).  

Compressed quadtree or Octrees 

Regions are defined in the same way as in a quadtree or octree (depending on the dimensionality), 
but paths are compressed so that all parent nodes that have just one non empty child are 
eliminated. Figure 4 shows a quadtree structured and the resulting compressed tree. This tree 
structure has all advantages of quadtree or octree but it is more memory efficient. 

 
 

Figure 4:  A quadtree structure (left) and the resulting compressed tree (right).  (Redrawn from 
Eppstein et al., 2005) 
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Algorithm of Point Insertion in Quadtree 

There are different types of quadtree structures which are differentiated by the type of data (point, 
area or volume) and the decomposition process.  Commonly, quadtrees are used for point data, 
curves, surfaces and volume. The decomposition process also may be into equal parts or it may be 
governed by the input.  Due to this variety, the algorithms for data insertion and search would be 
different. One of the most powerful and efficient algorithm for point data is discussed by Samet 
(1990). 

Data are inserted in the tree one by one. Three different conditions may occurred when a point is 
inserted in the tree structure: (1) data falls in an empty quadrant and is assigned to the node, (2) 
data falls in a quadrant which already has a point assigned to it, so the corresponding quadrant is 
recursively decomposed until each sub-quadrant contains a maximum of one point, or (3) data 
falls in a quadrant which contains a root and in this case the point is assigned to the relevant 
quadrant of that root. The algorithm is summarized in Figure 5. 

 

Figure 5:  Three cases which may occurred when a new point inserted in a tree. Point inserted in 
an empty quadrant (left), a quadrant contains data (center) and a quadrant contain a root (right). 

Searching within Quadtrees 

In geostatistical estimation and simulation, data in a local neighborhood must be identified. 
Quadtree structure can be used as an option. The main idea of search in quadtree is to reduce the 
number of quadrants that should be considered for the search. In order to do this, the coordinate 
of the initial tree’s root is compared with the desired point of estimation to find the quadrants of 
the tree that should be searched by using the template figure (See Figure 6). After all quadrants are 
found then a check is performed to see if data within those quadrants lie within the search 
neighbourhood. The following example explains detail of point insertion and search algorithm. 

Let’s consider six points with the coordinates and their porosity value given in Table 1 . First, 
let’s consider insertion of two first points into tree (one by one). According to the input data, the 
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boundaries of data space and also initial tree’s root are defined (X=6.5, Y=5.75). Comparing the 
first point coordinate to the tree’s root, point one is inserted in SW quadrant. The same 
comparison is performed for point 2 and shows that point 2 also resides in SW quadrant with 
respect to the tree’s root. Since the SW quadrant is already consists of point 1, this quadrant is 
divided into four sub-quadrants. A new root (parent node) is defined (X=3.5, Y=2.75) and both 
points 1 and 2 are compared with this new root to define into which quadrant they may be 
assigned (point 1 in SW and point 2 in NW).  Other data points are entered into tree in the same 
way (Figure 7). It is clear that the shape of the final tree is independent of the order in which data 
points are inserted into it. 

 
X Y Porosity 
1 1.5 6.98 

1.5 4.2 7.61 
8 10 7.42 
6 3.1 11.83 

12 7.35 8.49 
5 10 13.38 

Table 1:  Coordinates and value of 6 data used in example. 
 

  
Figure 6:  Template figure showing a circular search space and regions in which a root of a 
quadtree may reside (Redrawn from Samet, 1990). For example if all nodes within the radius r of 
point A are desired and the tree’s root, say R, is in region 7, then the search can be restricted to the 
NW and NE quadrants of R.  
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Figure 7:  6 data points are inserted in a tree. 

Now let’s consider that we want to search for all data points that fall in within a circle centered at 
(6.5,8.5) with radius of 2.5 (See Figure 8). According to the search circle and the template figure, 
the initial tree’s root reside in region 7 and the search area is restricted to the NW and NE 
quadrant of this root.  Thus there is no need to search the data points of SW and SE quadrants. 
Indeed, the NW quadrant is also a parent node and by referring to the template figure, the NE and 
SE child of this node should not be considered for search. 

 
Figure 8:  Searching around point (6.5,8.5) with radius of  2.5.  
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Implementation 

The subroutine srchqdt was developed to implement the quadtree search. This subroutine 
returns the number of close data to the estimation point as well as the index of those data in 
ascending order. This routine can be easily called in any estimation and simulation code for a 
circular search area. 

In order to compare the performance and efficiency of srchqdt with the available search 
algorithms in GSLIB software, a data set with 310 data points is considered (Figure 9 ).  

 
Figure 9. Location map and histogram of 310 samples  used in example. 

The kb2d and sgsim codes are modified to use the quadtree search. Estimation (simple kriging) 
and simulation is performed on the sample data with a quadtree search and the super block 
search.  Figure 10 shows the results of the search algorithm in estimation, and we see clearly that 
there is no impact on the estimation results due to the search strategy.  Figure 11 shows the results 
of applying the quadtree search and the super block search in simulation.  Minor differences are 
observed between the super block search and quadtree search in simulation which is not 
significant. 

The primary motivation for this study is to examine the computational efficiency of a different 
search algorithm.  As such, the execution time for this example is recorded and tabulated in Table 
2.  Surprisingly, results show that the super block search is more efficient than quadtree search in 
terms of execution time. 

 Code Grids Execution Time (s) 

kb2d-qt 300x500 147 

E
st

im
at

io
n 

kb2d 300x500 48.6 

sgsim-qt 300x500 48.1 

Si
m

ul
at

io
n 

sgsim 300x500 14.37 

Table 2. Comparison of execution time for quadtree search in estimation and simulation. 
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Conclusion 

Compared to the conventional super block search in many of the GSLIB estimation and 
simulation algorithms, the quadtree search does not show any improvement in terms of execution 
time for estimation or simulation.  The quadtree algorithm is inherently efficient, and the 
inefficiency appears in this paper may be due to the coding. Improving the srchqdt code may 
considerably affect the execution time. 
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Figure 10.  kriging results coming out of kriging with conventional search (Top), kriging using 
quadtree search (middle) and difference map (bottom). 
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Figure 11:  Simulation results coming out of SGSIM with Super block search (Top), SGSIM 
using quadtree search (middle) and difference map (bottom). 


