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Predicting the spatial distribution of petrophysical properties is an essential aspect of natural resource 
characterization.  Traditional geostatistical prediction without explicitly incorporating trends does not 
guarantee reproduction of important large scale features.  There are a variety of approaches to perform 
estimation and simulation with a trend.  These techniques are reviewed.  In general, currently available 
techniques are undermined by the challenge of inferring the underlying spatial law of the residual RF R(u).  
A new explicit approach to estimation and simulation with the trend is developed, described, and 
implemented.  The key feature of this method is the use of locally varying transformation tables for the 
transformation from original units to a Gaussian distribution. 

Explicit Approaches to Estimation with the Trend 

The goal of geostatistical estimation is to quantify local uncertainty. The pioneering work of Danie Krige 
[1] during the 1950s to correct conditional biases [2] was the seed for the popular group of estimation 
techniques collectively referred to as kriging. From the 1960s the utility of kriging has been for both large-
scale trend modeling and calculating recoverable reserves for production planning. 

The techniques in this work explicitly consider a trend model during quantification of local uncertainty. 
These techniques can also be referred to as non-stationary kriging implementations since the mean function 
m(u) used is not a constant as in stationary or simple kriging. Three non-stationary kriging implementations 
now reviewed. 

Kriging with a locally varying mean is the first technique. Recall the kriging estimator: 

 ( ) ( ) ( ) ( ) ( )K 0 0 K s s s
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Instead of stationary simple kriging with stationary mean m inferred from F(z), the mean m(u) corresponds 
to a non-stationary trend. 

Kriging with a trend (KT), originally known and developed as universal kriging (UK) by Matheron in 1969 
[3], provides minimum error variance estimates of the original Z(u) RF in the presence of a trend model 
m(u). Given that m(u) is a deterministic function of the coordinates vector u, the trend is also estimated 
according to the same minimum error variance optimality criteria. The recent reference [4] provides a more 
comprehensive derivation. The convenience of KT for simultaneously and optimally estimating both the 
m(u) trend and the original RF Z(u) is offset by a number of practical implementation issues. Among 
others, Armstrong in 1984 [5] highlights the most important one: that of inferring the underlying spatial 
law. 

Kriging with an external drift variable is an extension of KT where the functional form of the m(u) trend 
model is limited to V = 1 functionals: f0(u) = 1 and f1(u) set equal to a secondary (external) variable [6]. 
This was first implemented successfully with secondary seismic data by Marechal, 1984 [7].   

For a set of K indicator RFs, two methods are available to account for the trend. The first is the same as the 
approach for kriging with a prior mean except the prior mean m(u) are the locally varying proportions of 
the particular k indicator variable denoted p(uk). The second approach is referred to as soft kriging. As long 
as soft data is available and is amenable to a Bayesian coding into prior p(uk) mean values, the Markov-
Bayes model [8, 9] can be applied to explicitly integrate the trend into the resulting model of predicted 
geological heterogeneity and local uncertainty. 
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The most common and most straightforward explicit approach to geostatistical simulation with the trend 
model is a traditional simulation of the assumed stationary residual RF R(u) after the modeled trend m(u) is 
subtracted from the original RF Z(u) at the available data locations [12]. The simulated residuals are then 
simply added back to the m(u) trend model.  

An important disadvantage of residual simulation is the inability to control the bivariate residual-mean and 
residual-variable distributions. In each of these distributions, a characteristic feature can possibly be 
present. Lueangthong [13] illustrates how each of these two features is detected:  

1. Applications of traditional geostatistical simulation tools to the R(u) SRF imply R(u) is 
homoscedastic meaning the variance of the r(u) residuals is independent of the trend values m(u). 
However, virtually all residual-mean scatters of (r(u), m(u)) pairs will reveal some heteroscedastic 
behavior.  

2. The additive dissociation of Z(u) imposes the constraint R(u) ≥ m(u) for non-negative Z(u) 
variables. Simulating the spatial distribution of residuals and adding the mean back does not ensure 
this constraint is satisfied. 

These two problems of the residual simulation approach motivate a stepwise conditional transformation 
technique proposed in [13]. The key idea is a stepwise transformation of the residual data conditional to the 
trend. This transformation assumes the following form: 

 ( ) ( )1 ( ) | ( )− ⎡ ⎤= ⎣ ⎦u u uR R|mY G F R m  (2) 

where YR(u) is the Gaussian G transform of the residual random variable R(u) conditional to local m(u) 
windows. Similarly, the solution when the second of these problems persists is a stepwise transformation of 
the original variable conditional to the trend: 

 ( ) ( )1 ( ) | ( )− ⎡ ⎤= ⎣ ⎦u u uZ Z|mY G F Z m  (3) 

Both transformations complement conventional practice. The same decomposition in relation (3-3) is used 
in that the trend m(u) and residual R(u) is modeled separately and recombined.  The pre and post 
processing steps are implemented in order to preserve heteroscedastic and constraint features. All necessary 
implementation details as well as mining and petroleum examples are given in [13]. 

Simulation with the Trend via Locally Varying Transformations 

A new approach to accounting for the trend within a geostatistical prediction framework is now presented. 
This method is based on a locally varying transformation (LVT) to account for non-stationarity. The trend 
is built into and honored through the LVT. The theoretical framework, inference of the LVT, inference of 
the spatial law, estimation and simulation procedures, and implementation details are presented. 

The LVT approach does not conform to traditional Gaussian theory underlying multi-Gaussian kriging and 
sequential Gaussian simulation approaches. Two unique theoretical aspects of the LVT approach 
differentiate it from traditional theory. The first aspect is the use of a transformation that is unique to each 
location in place of the common global transformation. The second aspect is the use of locally transformed 
conditioning data instead of globally transformed Gaussian values to infer the spatial law for subsequent 
prediction. 

The first order assumption of stationarity implies all prior FZ(u; z) cdfs are equivalent to a single stationary 
univariate distribution FZ(z) at all locations u within a preset domain. The stationary FZ(z) distribution and 
associated first order moments are inferred with the cdf of all z sample data available within the domain 
where the SRF will be subsequently applied. The usual computation of the global FZ(z) cdf is performed; 
however, the FZ(z) distribution and associated first order mean and variance moments may be adjusted with 
declustering weights when preferential sampling is prevalent. 

Traditionally, a single stationary transformation between original z sample data values and subsequently 
transformed Gaussian y values is defined using the single stationary FZ(z) distribution as follows: 
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 ( )( )-1= Y Zy G F z  (4) 

Original z data is forward-transformed according to (10), predictions are performed using conditioning y 
values, and then the predicted y values are back-transformed into original z unit predictions with the reverse 
of (4): 

 ( )( )-1= Z Yz F G y  (5) 

Quantiles, not estimates, are back-transformed according to (5). Estimates are derived then by numerical 
integration. The forward and back transformation in (4) and (5) converts the original Z(u) SRF to a 
standard normal Gaussian Y(u) SRF for the purpose of prediction and then converts Y(u) predictions back 
to Z(u) predictions for post processing and visualization. All that is needed to perform these 
transformations is an assumption of multi-Gaussianity and the representative stationary FZ(z) cdf. 

The theoretical framework for the LVT technique is fundamentally different than the traditional theory 
underlying geostatistical prediction in that an assumption of first order stationarity is not employed. That is, 
the local FZ(u; z) cdfs are not equivalent to a single stationary univariate distribution FZ(z) built from all z 
sample data available within a fixed domain D: 

 ( ) ( ) ( ); ≠ ∀ ∈u u DZZ zF z F z  (6) 

The inequality in relation (6) is the foundation of the LVT approach and the following theoretical 
developments and prediction procedures.  

The local FZ(u; z) cdfs are calculated at each u location by applying locally varying weights wLT(u; us) to 
each available conditioning sample data: 
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where the notation wLT(u; us) indicates a location-dependent set of weights applied to the conditioning data 
available within the determined domain D. The indicator transform x(z(us); z) is: 
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The wLT(u; us) weights are not declustering weights that adjust FZ(z) to be representative of the domain D 
in the presence of biased sampling. The weights in relation (7) adjust the global FZ(z) distribution to be 
representative at that particular location u. 

The wLT(u; us) weights are calculated with a smooth kriging or inverse distance scheme parameterized 
similar to that for building a smoothly varying trend model. A different set of weights and different local 
FZ(u; z) cdf are calculated at different u locations since the configuration of available sample data relative 
to the u location changes depending on u. 

All univariate summary statistics can be calculated to summarize each local FZ(u; z) distribution. The 
locally varying transformed mean m(u) for each of the FZ(u; z) cdfs is calculated as: 
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And the locally varying transformed variance σ 2(u) for each of the FZ(u; z) cdfs is:  
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Prediction utilizing an underlying assumption of Gaussianity is still employed in the LVT approach. 
However, Z(u) is no longer assumed a SRF. It is a RF without first order stationarity since there is no 
longer a single stationary FZ(z) distribution from which a global transformation from original Z(u) space to 
a Gaussian SRF Y(u) space for prediction as in relation (4) can be defined.  

An intermediate RF T(u) is used to convert from original Z(u) space to a Gaussian SRF space. A locally 
varying transformation between original z sample data values and subsequently transformed t values is 
defined using the standard Gaussian distribution GY and the previously defined local FZ(u; z) cdfs as 
follows: 

 ( ) ( )( )-1
;= uY Z zt G F z  (11) 

Since the z sample data are transformed to t from a set of different FZ(u; z) cdfs, the resulting global 
distribution of transformed t values denoted by FT(t) is Gaussian but not standard Gaussian with zero mean 
and unit variance. The expected value of the T(u) RF is zero, and the variance will be less than unity for 
increased variability in the wLT(u; us) weights. 

Unlike Z(u), the T(u) RF will be assumed to have stationary first order mean and second order covariance 
because the non-stationary trend model m(u) is built into the locally varying transformation through the 
FZ(u; z) cdfs calculated from the wLT(u; us) weights. Traditional Gaussian estimation and simulation 
procedures can be performed using this non-standard Gaussian T(u) SRF. The T(u) SRF is converted to a 
standard Gaussian SRF for prediction.  

A transform of the t values to standard Gaussian yLT values is defined using the stationary FT(t) distribution: 

 ( )( )-1
LT Y Ty G F t=  (12) 

Original z data is forward-transformed according to the locally varying transformation in relation (11), the 
transformed t values are forward-transformed according to (18), and predictions are made with 
conditioning yLT values.  

The predicted yLT quantile values are then back-transformed to the intermediate T(u) SRF space with the 
reverse of (12): 

 ( )( )-1
LT= T Yt F G y  (13) 

And then the back-transformed t quantiles from (19) are back-transformed to original unit values using the 
reverse of (11): 

 ( ) ( )( )-1
LT ;= u YZ zz F G t  (14) 

Estimates are derived by numerically integrating over a series of quantiles. 

The stepwise forward transformation procedure converting from the non-standard Gaussian non-stationary 
RF Z(u) to the intermediate non-standard Gaussian stationary RF T(u) to the standard Gaussian stationary 
RF YLT(u) space can be summarized as:  

 ( ) ( )( )
( )( )

-1
;

-1
LT

=

=

uY Z z

Y T

t G F z

y G F t
 (15) 

Similarly, the stepwise backward transformation procedure converting from a standard Gaussian stationary 
Gaussian RF YLT(u) to the intermediate non-standard Gaussian stationary RF T(u) to the original non-
standard Gaussian non-stationary RF Z(u) space can be summarized as: 
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Notice that even though both YLT(u) and Y(u) are standard Gaussian SRFs, the YLT(u) SRF is different than 
its traditional analog Y(u) due to the locally varying transformation. The y conditioning data are calculated 
only once; they are the same regardless of the u location being estimated. 

Notice that the local FZ(u; z) cdfs need to be defined at all sample data and potential prediction locations u. 
To implement the forward stepwise transformation in relation (15), FZ(u; z) is only needed at the sample 
data locations u. To visualize the trend model m(u) and to implement the backward stepwise transformation 
in relation (16), FZ(u; z) is needed at all prediction locations u. 

It is through the wLT(u; us) kriging or inverse distance weights and resulting local FZ(u; z) cdfs that the non-
stationary trend model m(u) is built into prediction. The transformation procedure in relation (15) including 
the locally varying transformation in relation (12) removes the trend to create a standard normal Gaussian 
SRF where traditional geostatistical prediction can be performed. The back transformation in relation (16) 
preserves the trend model m(u) or non-stationarity.  

Consider a small example where a location u resides within a high potential area inside the domain D. High 
valued sample data will receive higher wLT(u; us) weights, low sample data values will receive lower wLT(u; 
us) weights, and the local F(u; z) cdf will be lower for lower z values and higher for higher z values. The 
forward transformed yLT conditioning values using relation (15) and the yLT predictions will tend to be 
lower than forward transformed y conditioning values using relation (4) and y predictions. The back 
transformation using relation (16) to zLT predictions will then tend to be higher than z predictions 
effectively accounting for the trend model m(u) or locally varying mean in this high valued area. 

The Underlying Spatial Law 

The spatial law or SRF is defined by a multivariate Gaussian distribution and a covariance or variogram 
function. The original Z(u) SRF is transformed to a standard normal Gaussian SRF Y(u) for prediction in a 
multivariate Gaussian context. The Gaussian variogram γY(h) identifies the spatial law used for subsequent 
prediction. The γY(h) variogram in integral notation and incorporating the transform in (10) is: 

 ( ) ( ) ( ) ( )( )( ) ( )( )( ) 22 -1 -11 1d d
2 2∈ ∈

⎡ ⎤= ⎡ − + ⎤ = − +⎣ ⎦ ⎣ ⎦∫ ∫u D u D
h u u h u u u h uγ Y Y Z Y Zy y G F z G F z   (17) 

where the integration volume u includes all possible h lag vector locations within the domain D. The γY(h) 
variogram is required by theory.  

The inference of γY(h) is straightforward. γY(h) is inferred by calculating:  
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YLT(u) is a standard Gaussian SRF. The first order mean and variance moments are zero and one, 
respectively. The spatial law of the YLT(u) SRF can be identified with the variogram γYLT(h). In integral 
notation and incorporating the transform in (21), the γYLT(h) variogram is written: 

 ( ) ( ) ( )
LT

2

LT LT
1 d
2 ∈

= ⎡ − + ⎤⎣ ⎦∫u D
h u u h uγY y y  (19) 

One approach to infer γY
LT(h) is with the direct calculation: 

 ( ) ( )( )
LT

( )
2

LT s LT s
s 1

1( )
2 ( ) =

= − +∑
h

h u u h
h

γ
P

Y y y
P

 (20) 

This approach results in the same problems as attempting to calculate the residual γR(h) variogram directly 
with r(u) data with a non-stationary mean previously. These problems were discussed earlier. 
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A procedure for calculating and inferring the γYLT(h) variogram is developed below. This offers a distinct 
advantage over other conventional methods for predicting with the trend. 

LVT and γYLT(h) Inference 

There are two inference problems with the LVT approach. The first is inference of the locally varying F(u; 
z) cdfs with wLT(u; us) weighting. The second is that of inferring the γYLT(h) variogram and spatial law.  

Inference of Locally Varying Transformation Tables 

The local non-stationary prior FZ(u; z) cdf representative of the area surrounding the u location must be 
constructed. All available sample data z(us) within the predetermined domain D are used to construct each 
local FZ(u; z) cdf. The weights wLT(u; us) assigned to the z(us) data at a particular u location are based on 
either global kriging or global inverse distance schemes. The spatial distribution of wLT(u; us) weights are 
used to generate a set of local FZ(un; z) cdfs containing a first order mean moment m(u) that varies 
smoothly through D representing a deterministic understanding of the trend or non-stationarity. 

Figure 1 illustrates the LVT idea using a simple 2D schematic example with 10 z(us) sample data shaded 
lighter for lower values and darker for higher values. The example is conceptual. Two hand-drawn contour 
lines separate the domain D into high, medium, and low valued locations. The conventional approach to 
prediction, invoking the assumption of stationarity, assumes all local FZ(u; z) cdfs are equivalent to the 
stationary FZ(z) cdf built from the 10 sample data weighted equally (w(us) = 1/S = 1/10) or by weighted by 
declustering (w(us) = wD(us)). This cdf is shown in Figure 2. The proposed LVT approach to prediction 
does not assume first order stationarity and instead calculates each local FZ(u; z) cdf differently by 
weighting the 10 z(us) data. A low, medium, and high valued location FZ(u; z) cdf is shown in Figure 2 with 
light, medium, and dark lines, respectively. When u is located within high valued zones, F(u; z) shifts to 
the right (high values) since lower valued and further away sample data receive lower wLT(u; us). 

An essential guideline to trend modeling is to avoid the tendency to model too much spatial variability. 
This principle is relevant here when calculating the wLT(u; us) weights to determine each FZ(u; z) cdf, since 
these locally varying cdfs have the trend m(u) imbedded within them. For both the kriging and inverse 
distance schemes, a global search is used retaining all S sample data at each u location. A relatively low 
inverse distance power and significant nugget constant c are used for an inverse distance approach while a 
relatively high nugget and long range is combined with a block discretization for the kriging approach.  

 
Figure 1: An illustration of the stationary cdf used for conventional prediction and a low, medium, and 
high case local FZ(u; z) cdf used for the proposed LVT prediction approach within a schematic 2D domain. 

 

The spatial variability of the local FZ(u; z) cdfs and trend model m(u) is sensitive to the inverse distance 
power and variogram parameters. Figure 2 (top) schematically shows these parameters for a low and high 
variability trend model. The resulting local FZ(un; z) cdfs are also shown (bottom). For inverse distance 
powers near zero or kriging with high nugget effect variograms, the set of wLT(u; us) weights are nearly 
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equal to 1/S at all u locations; the assumption of stationarity is strong, and the variation between FZ(u; z) 
cdfs is small. For increasing inverse distance powers and decreased nugget effect variograms, the set of 
wLT(u; us) weights increase from one u location to another, the assumption of stationarity is relaxed, and 
the variation between local FZ(un; z) cdfs increases. 

Calculating locally varying FZ(u; z) cdfs as described above will account for trends in the variable of 
interest. The FZ(u; z) cdfs are implemented within prediction as locally varying transformation tables. 

Inference of the Spatial Law 

The variogram for the YLT(u) RF is not as straightforward as calculating γYLT(h) according to relation (19) 
using yLT data. There are several qualitative solutions to approximate the spatial law of R(u) and YLT(u); the 
one proposed earlier was modeling no more spatial variability in m(u) than is offered deterministically; 
however, there is no robust calculation of the residual variogram when predicting with a trend. 

 
Figure 2: An illustration of the effect of increasing the variability in the trend with increasing inverse 
distance powers (IDP) or more continuous variograms has on the spatial variation of the local FZ(u; z) cdfs. 

An advantage of the LVT approach is that the variogram of the YLT(u) RF can be calculated directly and 
quantitatively. Calculating the γYLT(h) variogram is done with a mapping procedure starting from the γY(h) 
Gaussian variogram model and transforming through the locally varying FZ(u; z) cdfs to the γY

LT(h) 
variogram model. There are two main steps required to map a γY variogram value to its corresponding γYLT 
variogram value for a given h lag vector. 

The conventional Gaussian transformation in relation and associated Gaussian variogram model γY(h) is 
required. Figure 3 shows a calculated (open bullets) and modeled (line) γY(h) variogram. 

 
Figure 3: An illustration of the procedure implemented to map the single γY(h) variogram value indicated 
to its corresponding γY

LT(h) variogram value. 
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The next step entails constructing the h-scatterplot for the particular h lag of interest and sampling many y 
pairs. These pairs are denoted: 

 ( ) ( )( ), 1,...,+ =u u h
l

y y l L  (21) 

where L is on the order of 1,000 to 10,000 pairs. In the space of Y(u), the distribution of pairs in (27) is 
bivariate Gaussian and fully parameterized by the correlation ρY(h), which is calculated: 

 ( ) ( )1= −h hρ γY Y  (22) 

An underlying assumption is that a reliable variogram model and correlation in (22) can be derived from 
the available y data. 

The L sample pairs in (21) are then drawn from a bivariate Gaussian h-scatterplot with a Monte Carlo 
Simulation procedure. Two values, d(u) and y(u + h) are drawn randomly from each marginal distribution; 
the correlation between y(u) and y(u + h) is then imparted with the following equation: 

 ( ) ( ) ( ) ( )( ) ( )21 1,...,= ⋅ + − ⋅ + =u h u h u hρ ρl l l
Y Yy d y l L  (23) 

Relation (23) is equivalent to sequential Gaussian simulation with a single conditioning datum. Figure 4 
shows an h-scatterplot of the L y(u) and y(u + h) pairs for the h lag indicated on the γY(h) variogram plot.  

The other main step is transforming these L pairs from the Y(u) Gaussian SRF space to a new set of L pairs 
within the YLT(u) Gaussian SRF space where ρYLT(h) can be calculated directly. This new set of pairs is 
denoted: 

 ( ) ( )( )LT LT, 1,...,+ =u u h
l

y y l L  (24) 

There is, however, no single stationary FZ(z) cdf from which a unique transformation to YLT(u) can be made 
since, by definition of the local FZ(u; z) cdfs, the transformation is locally varying. Therefore, a manageable 
number N of randomly chosen un head locations are used to identify N u and u + h head-tail paired locations 
where the transformation from y(u) to yLT(u) and y(u + h) to yLT(u + h) is performed as: 
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  (25) 

for all head locations and similarly for all un
 + h tail locations (replace un with un

 + h). Relation (25) is a 
three stage stepwise transformation. The three transforms are: (1) from y values within Y(u) space to z 
values within Z(u) space, (2) from z values within Z(u) space to t values within T(u) space, and then (3) 
from t values within T(u) space to yLT values within YLT(u) space. The number of head-tail location pairs N 
is on the order of 10 to 100 depending on the size of domain.  

The stepwise transformation in relation (31) is repeated for all L pairs to obtain a total of L x N (yLT(u), 
yLT(u + h)) pairs. One (y(u), y(u + h)) pair and the corresponding set of N (yLT(u), yLT(u + h)) pairs are 
shown in Figure 4. The full bivariate distribution of (yLT(u), yLT(u + h)) pairs is then used to construct an h-
scatterplot in bivariate Gaussian YLT(u) SRF space from which the correlation ρYLT(h) is calculated. Since 
the YLT(u) SRF has unit variance, the γYLT(h) variogram is calculated as: 

 ( ) ( )
LT

LT1= −h hγ ρY Y  (26) 

This mapping procedure is then repeated for all h lags from the  γYLT(h) variogram model until the full 
γYLT(h) variogram model is built. The mapped  γYLT(h) variogram is then used to interpolate conditioning 
yLT values within YLT(u) space.  
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Prediction 

The traditional procedures for prediction must be modified in order to integrate the LVT approach. A step-
by-step methodology is now presented for geostatistical estimation and simulation with the trend using the 
LVT approach.  Estimation is implemented within a multi-Gaussian framework. There are nine major steps 
to the methodology: 

1. Collect all relevant hard z(us) sample data of the attribute of interest subsequently used for 
conditioning the estimation; 

2. At each sample location u, perform global kriging or global inverse distance to determine the wLT(u; 
us) weights, calculate the local F(u; z) cdf using relation (7), and then transform the z(us) values to 
their corresponding yLT(us) values using the stepwise forward transformation in relation (15);  

3. Establish the local F(u; z) cdfs at all subsequent simulation locations u by applying global kriging or 
global inverse distance to determine the wLT(u; us) set of weights and calculating the local F(u; z) 
cdfs using relation (7); 

4. Construct and display the trend model m(u) at all subsequent estimation locations; 

5. Determine the spatial law of YLT(u) by transforming the original z(us) sample data to Gaussian y(us) 
data using (4), calculating the γY(h) variogram using relation (18), performing Monte Carlo 
Simulation from the Y(u) space h-scatterplot with (23), transforming the Y(u) space h-scatterplot to 
the YLT(u) space h-scatterplot with (25), and calculating the resulting correlation ρYLT(h) and γYLT(h) 
variogram with (26) for all h; 

6. Establish a regular path through the network of subsequent estimation locations u; 

7. At an estimation location u, build the conditional cumulative distribution function (ccdf) with SK 
using the standard normal yLT(us) conditioning data values and γYLT(h) variogram established in steps 
2 and 3. The resulting Gaussian ccdf is parameterized by the SK estimate yLT*(u) and standard 
deviation σLT*(u); 

8. Univariate summaries of the local ccdfs are calculated by back transforming a suitable number of 
quantiles: 

 ( ) ( ) ( ) ( ) ( )( )( ) ( )( )( )-1 -1
LT LT LT; 1,...,⎛ ⎞= ⋅ + =⎜ ⎟

⎝ ⎠uu u uσj j* *
T Y YZ zz F F G G p y j J  (27) 

where the pj probabilities are evenly spaced between zero and one discretizing a standard Gaussian 
distribution. The resulting conditional distributions of zLT

(j)(u) values can be used to calculate 
univariate summaries such as the mean and variance; 

9. Proceed to the next estimation location u and loop over steps 7 and 8 until all estimation locations 
have been visited. 

Simulation: SGS  

Simulation is implemented within a sequential Gaussian simulation framework. There are twelve major 
steps to the methodology. The first five steps of the methodology are the same as the first five steps in the 
multi-Gaussian methodology above. There are seven additional steps: 

6. Establish a random path through the network of subsequent simulation locations u; 

7. At a simulation location u, build the conditional cumulative distribution function (ccdf) with SK 
using the standard Gaussian yLT(us) conditioning data values and γYLT(h) variogram established in 
steps 2 and 3. The resulting Gaussian ccdf is parameterized by the SK estimate yLT*(u) and standard 
deviation σLT*(u);  

8. Draw a simulated value yLT
(r)(u) from the local ccdf; 

9. Perform the stepwise backward transformation of yLT
(r)(u) to zLT

(r)(u) using (16); 
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10. Add the previously simulated zLT
(r)(u) value to the pool of conditioning data; 

11. Proceed to the next simulation location u according to the previously established random path 
established in step 6 and loop over steps 7 to 10 until all simulation locations have been visited; 

12. Repeat steps 6 through 11 with a different random path and random number seed to construct r = 1,.., 
R realizations. 

Application Example 

An example is presented to illustrate the LVT approach to simulation with the trend. The data used in this 
example are from a vein-type gold deposit. There are 67 samples (g/t) located on a 2D easting-elevation 
section. Figure 4 shows the distribution of equally weighted gold data spatially in a location map (left) and 
statistically in a cdf (top right). Since clustered samples were taken from higher gold grade areas, polygonal 
declustering is performed to obtain a representative cdf (bottom right). Although this cdf is not used 
directly in the LVT approach, it will be referenced later for validation of the LVT simulation results. The 
representative gold grade distribution is positively skewed with a mean and variance of 0.86 and 1.32, 
respectively. 

The location map in Figure 4 reveals a strong trend of decreasing gold concentration with depth that should 
be honored in simulation. Since there is an inadequate amount of data for reproducing the trend 
automatically, the trend must be incorporated explicitly. The LVT simulation approach is now presented.  

 
Figure 4: The distribution of original z sample data shown spatially in the location map (left) and as a cdf 
(top right) and the declustered distribution shown as a cdf (bottom right). The same grayscale is used 
throughout the remainder of the application example. 

 

At each of the 67 sample data locations, global ordinary kriging is performed to determine the FZ(u; z) cdfs. 
A 3 x 3 discretization is combined with the 40% nugget variogram with 500m isotropic range. Figures 12 
and 13 show the distributions of t and yLT values, respectively, with a location map (left) and cdf (right). 
The standard normal cdf of transformed y values is also calculated and shown with both cdfs as a shaded 
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line. Notice in Figure 5 that although both the FT(t) and FY(y) cdfs are normal with a mean of zero, FT(t) is 
non-standard normal with a variance of 0.69. Both distributions in Figure 6 are standard normal. 

To show the variation in the local FZ(u; z) cdfs, a high valued and low valued location are considered for 
observation. Figure 7 shows the FZ(u; z) and wLT(u; us) spatial distribution of weights for a low (left) and 
high (right) valued location. The sample locations are enclosed in a small square. The equally weighted 
FZ(z) cdf in Figure 4 is also shown with a shaded line. Notice the increase of FZ(u; z) in low valued areas 
and increase of FZ(u; z) in high valued areas. The means m(u) of the low and high valued u location FZ(u; 
z) cdfs are 0.74 and 1.91, respectively.  Now the local FZ(u; z) cdfs are calculated for each u location on a 
150 x 300 grid of simulation locations. There are then a total of 45,000 FZ(u; z) cdfs that are calculated. 
The locally varying mean m(u) or trend is extracted as the expected value of each of these local cdfs. 
Figure 8 shows the spatial distribution and cdf of the m(u) trend values. Notice the smooth deterministic 
nature of the trend in the spatial distribution and low variance in the cdf. Also notice that the trend model 
lowers the equal weighted mean from 1.36 to 1.19 accounting for the clustered high grade gold samples.  

 
Figure 5: The location map (left) and cdf (right) of the 67 calculated t values. The distribution of y values 
is also shown with a shaded line for comparison. 

 
Figure 6: The location map (left) and cdf (right) of the 67 calculated yLT values. The distribution of y 
values is essentially identical. 

The variogram mapping procedure is now performed to convert the γY(h) variogram to the full γY
LT(h) 

variogram needed for the interpolation of yLT data. A variography study was conducted on the normal score 
y values of the 67 original z gold sample data. The highest correlation and principle variogram direction is 
at 45o in the easting-elevation plane; the minor variogram direction is then at a 135o direction. Figure 8 
shows the final calculated γY(h) variogram points and model line for both the 45o (dark) and 135o (shaded) 
direction. The analytical form of the γY(h) variogram model is: 

 
o45
o135

a 145m
a 90m

( ) 0.20 0.80 ( ) =
=

= + ⋅h hγY Sph  (28) 
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Figure 7: The local FZ(u; z) cdf and spatial distribution of wLT(u; us) weights for the low valued u location 
(left) and high valued u location (right) indicated by the squares. 

 

 
Figure 8: The trend m(u) map (left) and cdf calculated from all 150,000 local FZ(u; z) cdfs. The grayscale 
is the same as in Figure 5. 

 

The variogram model in relation (28) is then mapped to the γY
LT(h) variogram model. The γYLT(h) 

variogram model is shown in Figure 9 with the broken dark and shaded lines. Notice the spatial correlation 
of the yLT values is much greater than that for the y values. The analytical form of the γYLT(h) variogram 
model is: 

 
LT o o45 45

o o135 135

a 140m a
a 75m a 295m

( ) 0.10 0.69 ( ) 0.21= =∞
= =

= + ⋅ + ⋅h h hγY Sph  (29) 
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Figure 9: The y values normal score γY(h) experimental (points) and model (line) variogram shown with 
the mapped  γYLT(h) model (broken line) variogram. The principle 45o direction is shown in dark and the 
minor 135o direction is shaded. 

All of the information required to perform simulation with the trend imbedded within locally varying FZ(u; 
z) cdfs is ready. The z data have been collected and transformed to yLT data with the 67 local FZ(u; z) cdfs at 
sample u locations, the 150,000 simulation location FZ(u; z) cdfs have been calculated, the trend m(u) 
model has been extracted and visualized, and the YLT(u) spatial law has been determined. The remaining 
seven steps in the SGS simulation procedure are now implemented for R = 30 realizations. The first four 
realizations are shown in Figure 10 spatially and in the form of a cdf. The declustered cdf and original cdf 
in Figure 4 are also shown with the shaded and broken lines, respectively, for comparison. The declustered 
distribution is honored via incorporating the trend through the locally varying transformation. The original 
cdf without declustering is not reproduced.  

The LVT approach to simulation with the trend should honor the large-scale features of the trend. This 
check is performed by comparing the etype from the 30 realizations to the trend model in Figure 8. As 
Figure 11 illustrates, the large-scale features of the trend model are honored. The most important advantage 
of the LVT approach is the ability to reproduce key features in the trend with an underlying spatial law that 
can be calculated directly. 

 
Figure 10: The first two LVT SGS simulated realization maps (left) and cdfs (right). The declustered 
distribution of z values is also shown with a shaded line for comparison. The grayscale is as in Figure 5. 
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Figure 11: The comparison between the input m(u) trend model imbedded within the local FZ(u; z) cdfs 
and the etype from 30 SGS realizations using the LVT approach. The grayscale is as in Figure 5. 

Remarks 

Prediction with the trend can be an important aspect of improving predictions. Regardless of the chosen 
domain size, the SRF formalism may be incapable of accounting for large-scale continuity characteristic of 
the trend model when there is an inadequate amount of conditioning data.  There is a large variety of 
estimation and simulation techniques available to incorporate trends. Underlying these techniques, 
however, is an ambiguous definition of the variogram and spatial parameters needed. This problem can be 
addressed with techniques that combine separate RFs or by modeling the trend with no more variability 
than is offered deterministically. Still, there is no objective quantitative procedure for inferring the spatial 
law underlying prediction with the trend.  The motivation for the LVT approach to predicting with the trend 
was an alternative prediction technique for which the underlying variogram can be calculated directly. The 
fundamental basis of the LVT technique is the use of a locally varying transformation to and from standard 
normal space where conventional prediction can be performed. The local non-stationary cdfs used for the 
transformations effectively account for the trend and allow the correct spatial law to be calculated directly. 
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