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The weights in linear estimation can be optimized with kriging; however, a direct optimization procedure is 
considered here.  The weights are optimized directly using a training image.  The weights can depend on 
the data values or, as in kriging, be data value independent.  Strings of data are considered to assess 
whether the weights to end samples should be larger – they should.  Non-linear estimation can easily be 
considered in the direct calculation of weights; kriging would require high order covariances.  All these 
results are compared with the sample weights obtained from Kriging.  The training image derived weights 
are more flexible reflecting the spatial features of training images, especially when strong anisotropies and 
discontinuities are present, they lead to an improved estimation in terms of the optimization criteria 
chosen.  The cost of this improved estimation is (1) the availability of a relevant training image, and (2) the 
CPU time to perform the optimization. 

Introduction 

Kriging based estimation techniques use the spatial correlation information provided by the variogram to 
calculate the weights of the sample values surrounding a point or block to be estimated.  The sample 
weights obtained from the kriging equations minimize the estimation variance and accounts for the spatial 
correlation between the surrounding samples and the estimated point / block and between samples 
themselves.  The variogram, however, fails to fully represent the complex spatial relationships. 

An alternative is to directly employ optimization techniques to obtaining optimal weights from a pertinent 
and representative training image of the spatial distribution of that particular variable under study.  Then, 
these weights can be used to estimate with the available data. 

A simulated annealing-like steepest descent method is used in the present work.  An original arrangement 
of weights is randomly perturbed in a recursive way, the changes in the weights are kept only if they lead to 
a lower estimation error under a well defined error criteria (squared error, absolute error or other criteria).  
This process requires a large number of iterations and training image for reference data and true values. 

The optimized weights and errors using this approach are compared with the ordinary and simple kriging 
weights and error for different “true” training images.  The characteristic features of the optimized weights 
are studied relative to the features of the training images values, such as Non-stationarity, Non-Gaussianity 
and discontinuities.  The effect of non-stationarity when estimating in a finite domain is also studied using 
synthetic training images.  Both data independent and dependent weights are considered; in the last case a 
non-linear estimator is considered. 

Methodology 

The methodology for weights optimization followed in this work is similar to the one proposed by Deutsch, 
Ortiz and Bhandari (2006), this is an iterative procedure that takes the numerical values of a training image 
pixels in order to assemble a big number, M,  of  data and true values for a predetermined data arrangement.  
The original data weights are randomly perturbed and if no constraint is imposed to the sum of the weights 
the estimated value is calculated by a linear estimator of the form: 
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Where u is a location within the training image, m is the mean of the pixel values in the training image, 
(u)*z is the estimated value at location u, )u( iz  . Otherwise, if this sum is constrained to 1 the linear 

estimator becomes: 
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The weights of these linear estimators are independent of the data values.  Data dependent weights can be 
defined as: 
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Where ija are the coefficients of a polynomial of order m.  Therefore the non-linear estimator with data 
dependent weights becomes: 
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In this case the coefficients ija of each data point are slightly perturbed iteratively. In both cases, altering 
the weights or altering the polynomial coefficients, the changes are accepted if these lead to a lower value 
of the optimality criteria used, which can be, among the most important: 
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The MSE is the most used optimality criteria in this work, M is the number of arrangements conformed by 
the samples locations and estimated points that can be defined within the training image.  

Estimating with strings of data 

In Kriging, the string effect appears in the form of higher weights assigned to the samples located in the 
extremes of a string of data.  This effect is observed in both Simple (SK) and Ordinary Kriging (OK), but is 
more pronounced in OK. It is controlled by the variogram ranges, ax, ay, the distance from the estimated 
point to the string, d, the string length, L, the constant spacing between samples, s, and the number of 
samples in the string, n. (See Figure 1) 

The central samples get higher weights when the ratio d /ax decreases and the ratios s/ay and L/ay increases; 
this behaviour is induced by the higher importance acquired by the correlation between the samples and the 
estimated point in the kriging matrix when the anisotropic distance to the estimated point decreases, the 
anisotropic separation between samples increase, as well as the anisotropic length of the string.  The sample 
weights in the extremes follow nearly the inverse behaviour; being the ratios s/ay and L/ay the most 
important factor than control them.  This can be explained by realizing that if the variogram range parallel 
to the string increases, the correlation between the samples in the string becomes more important than the 
correlation between the samples and the estimated point, thus the high weights assigned to samples in the 
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extremes reflect the importance that acquire the information in the direction parallel to the string, which is, 
however, limited to few samples. 

Increasing the number of samples in the string without increasing its length leads to a redistribution of 
weights maintaining the same previous weights profile, the central samples can get slightly lower weights 
due to the lowering of the ratio s/ay.  If the number of samples is increased by adding new samples at the 
extremes of the string, and thus increasing the string length, the weights of the former samples in the ends 
are redistributed with the new ones and the central samples get higher weights because enlarging the string 
has the same effect as decreasing the distance to the estimated point. 

Obtaining optimal weights from different TI’s for a string of data 

The string effect is also present when the sample weights are obtained from a TI by optimization. But in 
this case, the weights distribution profiles are not induced by the variogram model used but by the spatial 
relationships inherent to the TI. Moreover these weights profiles are not necessarily symmetrical, neither 
the string effect appear in them at the same anisotropic distances as it appears in kriging. Figures 3 and 4 
show a comparison of the weights profiles at different distances for two training images using SK, OK, 
unconstrained and constrained optimization. The training images used for deriving the estimation weights 
are coded as p162f and p216z (the plots and histograms of these two training images used are shown in the 
appendix of this paper). The p162f TI is approximately stationary and show regular spatial features with 
constant angles and ranges of the anisotropy ellipsoid, the variogram model fitted to the experimental 
variogram obtained from the pixel values of this TI has the following parameters: 

Table 1: TI p162f, fitted variogram model parameters 
Model Sill Az a_max a_min 
Nugget Effect 0.001       
Gaussian 0.312 90 24.5 7.2 
Gaussian 0.554 90 65 9 
Gaussian 0.133 90 455 14 

By the contrary, the second training image, coded p216z, shows discontinuities with zones of different 
anisotropy orientation. The best variogram model fitted for this TI is defined by the next parameters: 

Table 2: TI p216z, fitted variogram model parameters 
Model Sill Az a_max a_min 
Nugget Effect 0       
Gaussian 0.56 100 21.0 4.0 
Gaussian 0.44 90 140.0 5.8 

For a regular stationary TI image such as p162f, the unconstrained optimized weights profiles are fairly 
similar to those obtained with simple and ordinary kriging only at short distances. These profiles diverge 
quickly as the distance to the estimated point increases; the profiles obtained by optimization are more 
flexible reflecting  the spatial features of the TI at different distances, as it can be appreciated in the 
systematic higher weights that are assigned to the top samples in the p162f TI (see Figure 3), or as it is 
shown in the weights obtained from the TI p216z (see Figure 4), where the short scale variogram produces 
slightly asymmetrical profiles for SK and OK at short distances while the optimal weights profiles show a 
stronger asymmetry at short distance but a more symmetrical shape at  long distances, as well as important 
weights for the central sample at all distances.  In this case, the weights profile asymmetry at short and mid 
distances and the symmetry al long distances can be attributed to the zones of different layering orientation 
and the discontinuities present in this particular training image. 

This example highlights the “rigidity” of variogram based estimation and the variogram limitations for 
depicting the spatial features of the training images with enough detail. Figures 5a and 5b show the SK 
errors and the unconstrained optimization errors, and the OK errors and constrained optimization errors, 
respectively, for the p162f TI. Equivalent graphs are presented in Figures 5c and 5d for the p216z TI. There 
it can be observed that Kriging and optimization errors eventually reach a sill at longer distances for 
optimization than kriging minimum squared errors. This distance does not necessarily correspond to the 
variogram range but it is related to the capability of the variogram induced kriging weights to depict the 
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spatial features of the Training image at long distances. Similarly, the TI derived MSE’s can also reach a 
sill at certain distance. The average MSE differential (∆E) between the errors obtained using kriging and TI 
derived weights grows with the distance until reaching a peak and decreases at longer distances. The 
average weights difference between kriging and TI derived weights follows a similar path of growing until 
reaching a peak and becoming stable or decreasing at farther distances. 

In general, the weights average difference and the average MSE differential have a positive relationship at a 
fixed pixel distance when several different training images are considered (see Figures 6a and 6b), this 
means that, usually, as the TI derived weights diverge from the kriging weights, the average MSE 
improvement is higher. However the correlation between these two measures is not very strong, this can be 
explained in regard to their behaviour description above and the particular spatial features of each training 
image. 

Non stationarity in finite domains 

In order to study the response of TI weights in comparison to Kriging weights within a non stationary finite 
domain a set of synthetic training images was generated. First, a standard Gaussian residual was simulated 
by Sequential Gaussian simulation over a 50,000 x 9 pixel grid. The variogram used was a spherical model 
with 40 pixels range in the direction parallel to the X axis, and a range of 7 pixels in the Y axis direction, 
and the nugget effect was set to zero.  Then, the composite variable in the final training images were 
generated by different combinations of vertical trends (T(u)) multiplied by an slope factor (aT) plus 
residuals (Z(u)) also multiplied by an amplitude factor (aZ) .  Figure 7 shows the four vertical trends used: 
linear, upper side linear, quadratic and cubic. Thus, the composite training image variogram in the vertical 
direction become: 
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Where ( )T hγ  and ( )Z hγ are the variograms of the vertical trend and the residuals respectively. However, 
this formula leads to non permitted models if non linear trends are used. So the experimental variograms of 
the composite variable were calculated in the two major directions and approximately fitted using permitted 
models. 

When estimating a point located a the middle of the band with a linear trend, the TI derived weights 
become very close to the Kriging derived weights using the variogram of residuals for both, constrained 
and unconstrained optimization  (See Figures 8a and 8b). This can be explained by the fact that being the 
slope of the trend constant, the estimation weights at the middle of the band are mostly controlled by the 
horizontal component of the composite variogram above, which is just the variogram of the residuals. 
Consequently, the MSE obtained by both methods are very close (see table 3a).  

This is not the case when the estimated point is located at the top of the band, then the correlation between 
the samples in the vertical string becomes as important as the correlation between samples and the 
estimated point, thus the whole composite variogram is needed. Figures 8c and 8d present the TI derived 
weight profiles in unconstrained and constrained optimization compared with SK and OK weights, 
respectively. In these Figures it can be observed that, for TI derived weights, increasing the residuals 
amplitude has a result a decreasing in the differentiation between border and middle samples weights and 
an approaching between TI and Kriging derived weights, which is concordant with the MSE presented in 
the table 3b. 

It is also worth to note that, while SK and OK derived weights for the sample at the bottom of the string are 
very close to zero or show a slightly positive string effect, the TI derived bottom sample weight can show 
an inverse string effect, particularly in no constrained optimization. 
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Table 3a: MSE comparison for estimation at the middle of a band with linear vertical trend 

Combination SK 
Unconstrained 

opt. ΔE   OK 
Constrained 

opt. ΔE 
2T+0.25Z 0.053 0.053 0.04%  0.062 0.062 0.12% 
2T+Z 0.847 0.846 0.07%  0.992 0.991 0.15% 
2T+2Z 3.387 3.384 0.09%  3.969 3.963 0.15% 

Table 3b: MSE comparison for estimation at the top of a band with linear vertical trend 

Combination SK 
Unconstrained 

opt. ΔE  OK 
Constrained 

opt. ΔE 
2T+0.25Z 0.084 0.069 17.81%  0.086 0.079 8.28% 
2T+Z 1.141 1.032 9.54%  1.287 1.191 7.44% 
2T+2Z 3.868 3.798 1.83%  4.496 4.430 1.47% 

 

When the trend is only present in the upper side of the band, TI derived weights approaches to those 
obtained by Kriging using the composite variogram (see Figures 9a, 9b, 9c and 9d). At difference of the 
previous example, this is true even when the estimated point is located at the middle of the band (Figures 9a 
and 9b), where the high central weight induced by the composite variogram is closely replicated in the TI 
derived weights. But, whereas the Kriging weights profile are symmetrical when estimating at the middle 
of the band, the TI derived weights minimize the influence of the sample in the extreme of the string 
affected by the trend, and present a positive string effect in the extreme sample of the side where no trend is 
present. 

Tables 4a and 4b present the Kriging and optimization MSE errors obtained from TI with different 
combinations of trends and residuals. In these tables it can be observed that, in general, the pronounced is 
the trend slope the bigger is the improvement in the MSE, and the bigger is the amplitude of residuals, the 
lower is the difference between the MSE obtained from kringing weights and the MSE obtained from TI 
derived weights. 

The effect of increasing the trend slope can be explaining by the flexibility of the TI derived weights to 
adjust to complex trends. The effect of increasing the amplitude of residuals is explained by the increased 
randomness of the values; more random is a variable, more similar and uniform will be the weights derived 
by any method. The extreme of this is the pure nugget effect, which yields all the weights equal. 

 

Table 4a: MSE comparison for estimation at the middle of a band with an upper side linear 
vertical trend 

Combination SK 
Unconstrained 

opt. ΔE  OK 
Constrained 

opt. ΔE 
T+0.25Z 0.070 0.056 20.06%  0.077 0.067 13.70% 
2T+0.25Z 0.077 0.056 27.51%  0.080 0.067 16.08% 
T+Z 0.882 0.868 1.59%  1.049 1.027 2.06% 
2T+Z 0.964 0.883 8.45%  1.141 1.053 7.67% 
T+2Z 3.423 3.416 0.21%  4.033 4.019 0.36% 
2T+2Z 3.524 3.470 1.55%  4.185 4.109 1.81% 
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Table 4b: Error comparison for estimation at the top of a band with an upper side linear vertical 
trend 

Combination SK 
Unconstrained 

opt. ΔE  OK 
Constrained 

opt. ΔE 
T+0.25Z 0.092 0.073 20.51%  0.098 0.079 18.92% 
2T+0.25Z 0.087 0.074 15.04%  0.088 0.080 8.29% 
T+Z 1.064 1.009 5.18%  1.177 1.137 3.47% 
2T+Z 1.330 1.112 16.33%  1.381 1.221 11.57% 
T+2Z 3.692 3.671 0.56%  4.266 4.255 0.27% 
2T+2Z 4.246 4.036 4.95%  4.715 4.546 3.58% 

 

If a quadratic or cubic trend used the weights profiles obtained from the TI are similar to those obtained 
from Kriging when the estimation point is at the centre of the band (See Figures 10a and 10b). But, as 
previous cases, the TI weights approaches those obtained with Kriging using the composite variogram 
when the estimating a point which is not located at the middle of the domain. In general, the higher the 
trend order, the bigger the improvement of the MSE of the TI derived weights over the Kriging weights, 
thus when a cubic vertical trend is present the TI derived weights are comparatively much lower than those 
obtained from SK or OK. 

 
Table 5a: Error comparison for estimation at the centre of a band with non linear vertical 
trend 

Trend 
Type SK 

Unconstrained 
opt. ΔE  OK 

Constrained 
opt. ΔE 

Quadratic 0.934 0.862 7.71%  1.120 1.033 7.78% 
Cubic 0.934 0.849 9.15%  1.242 0.999 19.58% 

 
Table 5b: Error comparison for estimation at the top of a band with non linear vertical 
trend 

Trend 
Type SK 

Unconstrained 
opt. ΔE  OK 

Constrained 
opt. ΔE 

Quadratic 1.470 1.154 21.52%  1.461 1.242 14.99% 
Cubic 1.582 1.171 26.01%  1.588 1.290 18.75% 

 

Non Linear Estimation  

The coefficients of a second order polynomial were optimized without constraints according to the 
procedure explained above in order to get the data conditioned weights for a vertical string with five 
samples. The training images used were the same as used for the first example of linear estimation; these 
are the TI codes p162f and p216f.  

Figures 11a to 11d show the data conditioned weights obtained from the TI p162f. The curves presented 
there reproduce the same weight profiles as obtained using linear estimation; this is a predominance of the 
central sample weight for short distances evolving to a pronounced string effect at longer distances. 
Moreover, depending of the distance and the sample position the relation between the sample value and the 
sample weight can increase or decrease following a quadratic relationship. 

The sum of weights (Figure 12) decreases with the distance and for this particular TI higher grade samples 
can receive lower weights at long distances. Compared with the SK MSE’s and TI based Linear Estimation 
MSE’s, the TI based non linear estimation MSE’s are the lowest but doesn’t improve the MSE differential 
considerably. 
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Data dependent weights obtained from the TI p216z also show the typical evolution towards the string 
effect as the distance to the estimated point increases, but also show similar arrangements to the weights 
obtained for linear estimation. In this particular case the high weights assigned to the upper sample at mid 
distances are reproduced in the data dependent weights. 

As in the previous case, the MSE improvement with non linear estimation is not much higher as the 
obtained with linear estimation (see Figure 16). 

If a perfectly Gaussian training image is used, the data dependent weights become constant for every data 
value (see Figure 7). This is due to the reduced connectivity between the values of different classes and the 
stationarity induced by the Gaussian simulation logarithm.  

Conclusions 

Estimation using TI derived weights is not based on conventional assumptions of stationarity and 
ergodicity, the weights provide flexibility to deal with complex spatial features and relationships present in 
training images.  The MSE error improvement using such weights instead of kriging is minimal when the 
Training image appears stationary with linear features.  In fact, the optimized results are equal to kriging 
with the training image is a simulated Gaussian realization.  The improvement, however, becomes 
significant when the TI is non stationary. 

MSE improvement over kriging when using data-dependent weights in non linear estimation is not 
considerably greater than when using data independent weights in linear estimation.  However if strong 
continuities of particular class values are present in the TI, this improvement can be higher. 

Linear and non linear estimation based on data independent and data dependent weights from training 
images leads to an alternative path to deal with problematic issues in variogram based estimation 
techniques such as non-stationarity, unconformities, particular class values connectivity and other spatial 
features present in real world phenomena. 

References 

Deutsch, C.V., Kriging with Strings of Data, Mathematical Geology, Vol. 26, No. 5, November 1994, pp. 
623-638. 

Deutsch, C.V., Kriging in a Finite Domain, Mathematical Geology, Vol. 25, No. 1, January 1993, pp. 41-
52. 

Deutsch, C.V., Ortiz, J.M. & Bhandari, D., Optimal Weights for Linear Estimation Using Training Images. 
Centre for Computational Geostatistics, Report Eight, 2006. 

 

 

0

1

2

0 0.2 0.4 0.6 0.8 1
W eig ht s

d/ax=0.4 s/ay=0.1
d/ax=0.4 s/ay=0.1
d/ax=0.4 s/ay=0.02
d/ax=0.05 s/ay=0.02
d/ax=0.05 s/ay=0.2

 
Figure 1: String data configuration Figure 2: OK weights for the upper half of a 
 data string with five samples 

            ↑s/ay:                      
            ↓s/ay: 

            ↓d/ ax, ↑s/ay: 
               ↑d/ax, ↓s/ay: 
 



 111-8 

 
Figure 3: Weight profiles according the distance for Kriging and TI p162f optimization. 
 

 
Figure 4: Weight profiles according the distance for Kriging and TI p216z optimization. 
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Fig. 5b: TI p162f - OK and 
optimized MSE
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Fig. 5c: TI p216z - SK and 
optimized MSE
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Fig. 5d: TI p216z - OK and 
optimized MSE
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Fig. 7: Trends used for generating synthetic TI's
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F ig. 8c:  F inite  do main with Linear T rend. 
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F ig 10a: F inite  do main with P o lyno mial 
T rend. Unco nstrained o ptimizat io n

Est imated po int  at  the centre.
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F ig 10b: F inite do main with P o lyno mial 
T rend. Unco nstrained o ptimizat io n

Estimated po int  at  the centre.
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F ig 10c: F inite  do main with P o lyno mial 
T rend. Unco nstrained o pt imizat io n

Est imated po int at  the T o p.
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F ig 10d: F inite  do main with P o lyno mial 
T rend. Unco nstrained o ptimizat io n

Estimated po int  at  the T o p.
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Fig. 11a: TI p162f. Non Linear 
Estimation Weights - Distance = -4
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Fig. 11b: TI p162f. Non Linear 
Estimation Weights - Distance = -10
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Fig. 11c: TI p162f. Non Linear 
Estimation Weights - Distance = -20
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Fig. 11d: TI p162f. Non Linear 
Estimation Weights - Distance = -40
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Fig. 12:TI p162f. Non Linear 
Estimation -Sum of Weights
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Fig 13: TI p162f. MSE's for Kriging and 
TI based Linear and Non Linear 

estimation.
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Fig. 14a: TI p216z. Non Linear 
Estimation Weights- Distance = -4
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Fig. 14b: TI p216.: Non Linear 
Estimation Weights- Distance = -10
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Fig. 14c: TI p216z. Non Linear 
Estimation Weights - Distance = -20

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Data value

-2
-1
0
1
2

Fig. 14d: TI p216z. Non Linear 
Estimation Weights - Distance = -40
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Fig. 14: TI p216z. Non Linear 
Estimation - Sum of Weights
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Fig. 16: TI p216z. MSE's for Kriging 
and TI based Linear and Non 

Linear estimation.
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Fig. 17: Gaussian TI. Non Linear 
Estimation Weights - Distance = -4
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Two of the training images used 
 

 

 
 
 

 


