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The major obstacle to extensive use of cokriging for integration of multiple data types in estimation is the 
requirement of modeling a positive definite covariance matrix of size K by K including up toK2 different 
terms if K coregionalized variables are considered.  In practice, this matrix is modeled using a linear 
model of coregionalization (LMC); each covariance is modeled by a different linear combination of the 
same basic covariance functions.  Oftentimes, sampling of the secondary variable is much more extensive 
than that of the primary variable, often, the secondary variable is exhaustively sampled (sampled at each 
node where the primary variable is to be estimated).  In such cases, only the secondary data at the 
estimation location (‘colocated’ value) could be retained in estimation.  The underlying Markov-type 
hypothesis is that the collocated primary data screens out all further away primary information.  Under 
Markov hypothesis, all that is needed to perform estimation is the primary covariance function and the 
correlation coefficient between primary and secondary data.  An intrinsic correlation model (ICM) was 
proposed for modeling the covariance matrix.  The intrinsic correlation model is obtained when the direct 
and cross covariance functions are all proportional to the same underlying spatial correlation function.  
Although ICM appears similar to a Markov models, it makes greater use of the secondary data and does 
not result in variance inflation.  This paper is aimed at comparing and analyzing different correlation 
models, that is, linear model of coregionalization, intrinsic correlation model and Markov model based on 
a small comparative example. 

Introduction and Recalls 

Simple Cokriging (CSK) is a natural extension of Simple Kriging to the case when multivariate data is 
available (Chiles and Delfiner, 1999).  Simple Cokriging allows estimating an unknown value at the 
location of interest not only from data of the same type, but also based on the auxiliary variables in the 
neighborhood.  Specifically, the Simple Cokriging estimator is the following weighted linear combination 
of the mean of the variable of interest ( *m ) and the data from different variables located at sample points in 
the neighborhood of the estimation location u* 
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where the CSK weights TT
N

T ],,[ 1 λλ … are found from a Simple Cokriging system given by 
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where the left hand side covariance matrix is built up with square symmetric in  by in  blocks iiC  on the 

diagonal and with rectangular in  by jn  blocs ijC  off the diagonal, with 
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The blocks ijC  contain either direct ( ji = ) or cross ( ji ≠ ) covariances between sample points. The 

vectors *ic  contain the covariances with the variable of interest, for a specific variable of the set, between 

sample points and the estimation location. The vectors iλ  represent the weight attached to the sample of 
the i-th variable. 

We can see from system (1)-(2) that in order to perform Simple Cokriging we require a joint model for the 
matrix of covariance functions. In what follows we describe three possible types of models for the matrix of 
covariance functions, that is, linear model of coregionalization (LMC), intrinsic correlation model (ICM) 
and Markov models of coregionalization (MM I and MM II). 

Linear Model of Coregionalization (LMC) 

The Linear model of coregionalization is the most extensively used model for describing joint spatial 
continuity of two or more random variables. The LMC for the two random variables is given by the 
following system (Deutsch, 2002) 
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where the st
i ni ,,1, …=Γ , are nested structures made up from the common pool of variogram models 

(spherical, exponential, etc.). The linear model of corregionalization models each direct and cross 
variogrma with the same variogram nested structures, but the sill (contribution) parameters are allowed to 
change so that the following constraints are satisfied, 
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The linear model of coregionalization (3) can be extended to any number of variables, however, it is rarely 
applied to large number of random variables. 

Intrinsic Correlation Model (ICM) 

Intrinsic correlation model is the simplest multivariate covariance model that can be adopted for a 
covariance function matrix. It describes the relationships between variables by the variance-covariance 
matrix V and the relations between points in space by a spatial correlation function )(hρ  as follows 
(Wackernagel, 2003) 

 ( ) ( ).C h V hρ=  (5) 

Note that the spatial correlation function )(hρ  is the same for all variables. The model (5) is called the 

intrinsic correlation model due to its property that the correlation between any two variables ijρ  is 
independent of the spatial scale, that is, 
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In practice the intrinsic correlation model is obtained when direct and cross covariance functions are all 
proportional to the same underlying spatial correlation function, 

 ),()( hbhC ijij ρ=  (7) 

where the coefficients ijb  represent the variances (i = j) and covariances ( ji ≠ ) between variables. 
Similarly to (7), an intrinsic model can be defined in terms of variograms. Specifically, the intrinsic 
correlation model is a product of a positively coreligionalization matrix B of coefficients ijb  and a direct 

variogram ),(hγ  that is 

 ).()( hBh γ=Γ  (8) 

When comparing a linear model of correlation (3) with an intrinsic correlation model, we can observe that 
the IMC can be viewed as a limit of the LMC. This is because when direct and cross covariance functions 
of the variables under consideration are all proportional to the same underlying spatial correlation function 
the linear model of correlation reduces to the intrinsic correlation model. 

Collocated Simple Cokriging 

In order to perform Simple Cokriging we require a joint model for the matrix of covariance functions, 
Linear Model of Coregionalization. Thus, when K different variables are considered, the covariance matrix 
in the left hand side of Simple Cokriging equation (2) requires 2K  covariance functions. Such inference is 
very demanding in terms of data and subsequent joint modeling, therefore, more simple estimation 
technique called Collocated Simple Cokriging handling multiple data variables is frequently employed 
instead. 

Collocated Simple Cokriging is a strategy in which the neighborhood of the auxiliary variable is reduced to 
only one point at the estimation location. This value of the auxiliary variable *)(uY is said to be collocated 
with the variable of interest )(uZ  at the estimation location u*. The Collocated Simple Cokriging 
estimator is given by (Goovaerts, 1997) 
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where Collocated Simple Cokriging weights T
Y

T
Z ][ λλ are found from the following system of equations 
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where ZZC  is the left hand matrix of the Simple Kriging system of )(uZ  and ZZc  is the corresponding 

right hand side covariance vector. The vector YZc  contains the cross covariances between the n sample 
points of )(uZ  and the estimation location u* with its collocated value *).(uY   

Markov Model I 

The Markov Model I assumes that the primary Z data prevails over the secondary Y data. Formally, it can 
be written as (Almeida and Journel, 1996) 

 ',},)(|)({}')(,)(|)({ zhzuZuYEzhuZzuZuYE ∀∀===+= . (11) 

(That is, dependence of the secondary variable on the primary is limited to the collocated primary datum). 
The cross covariance ZYC  under the Markov model I is given by 
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 ),()( hrhC ZYZYZ σ=  (12) 

where YZσ  denotes the covariance between Z and Y; and Zr  is the vector of spatial correlations 

.,,1),( 0 nuu …=− αρ α  

Using the Markov model I for the cross covariance YZc , we can rewrite the Collocated Simple Cokriging 

system (4) for the weights T
Y

T
Z ][ λλ  as  
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where ZR  is the matrix of spatial correlations .,,1,),( nuu …=− βαρ βα  

In order to to perform the collocated cokriging with Markov model I, we only need to know the covariance 
function  

)()( hhC ZZZZ ρσ= , 

the variance YYσ  of the auxiliary variable and the correlation coefficient )0(YZYZ ρρ = . Retaining only 
the collocated secondary data, in general, does not affect the resulting estimate, since the close 
neighborhood data are usually very similar in values. However, it may affect the Cokriging estimation 
variance. Cokriging variances are overestimated, oftentimes significantly. This causes serious problem in 
sequential simulation (Deutsch, 2002). 

Markov Model II 

The Markov Model II assumes that the secondary Y data prevails over the primary Z data. Formally, it can 
be written as. 

 ',},)(|)({}')(,)(|)({ yhyuYuZEyhuYyuYuZE ∀∀===+=  (14) 

(That is, dependence of the primary variable on the secondary is limited to the collocated secondary 
datum). The cross covariance ZYC  under the Markov model II is given by 

 ),()( hrhC YZYZY σ=  (15) 

where ZYσ  denotes the covariance between Z and Y; and Zr  is the vector of spatial correlations 

.,,1),( 0 nuu …=− αρ α  

Markov Models and Intrinsic Model of Correlation 

It is interesting to note that despite both Markov models and Intrinsic correlation model assume that the 
cross covariance and crosscovariogram between primary and secondary variables are proportional to the 
spatial correlation function of the primary random variable (Markov Model I or secondary random variable 
in Markov model II), there is a significant difference between IMC and Markov models. On the contrary to 
ICM, Markov models do not lead to the linear model of coregionalization(LMC). This is because there is 
no assumption on the continuity of the other variable in Markov models. Intrinsic correlation model put 
more assumptions on the continuity of the variables under study; however, it results in better models of 
heterogeneity and no variance inflation (Babak and Deutsch, 2007).  
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Example 

Let us consider the following Linear Model of Coregionalization (LMC) for the primary unit variance, zero 
mean random variable Z and secondary unit variance, zero mean random variable Y  
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where )(),( 3216 hGaushSph  denote the Spherical variogram model with the range of 16 and Gaussian 
variogram model with the range of 32. The correlation at lag 0 between primary and secondary random 
variables can be calculated under stationarity as 

5.025.025.01])0(25.0)0(25.0[1)0(1 3216 =−−=⋅+⋅−=−= GausSphYZYZ γρ . 

Now let us consider estimation of the domain 50 by 50 units based on the primary data and exhaustive 
secondary data. Figure 1 shows locations of 12 primary data and their distribution, the crossplot between 
primary data and collocated secondary data and the map of exhaustive secondary data. Three approaches 
for estimation are considered: 

• the Simple Cokriging with the linear model of corregionalization (16);  

• the Simple Cokriging with the intrinsic correlation model. The primary variable variogram of 
system (16) is taken as the underlying variogram for the intrinsic correlation model; 

• and finally using Collocated Simple Cokriging with MMI.  

For the fair comparison, the following parameters were used in estimation: all primary data were applied in 
estimation, in Simple Cokriging secondary data was assembled at the same locations as the primary data 
and at the estimation data location. 

Results: Weights profiles 

Let us first perform estimation of the 2 arbitrary locations in the study domain, say (10,10) and (35, 35), 
based on Simple Cokriging and Collocated Simple Cokriging and analyze the difference in profiles of 
Cokriging weights. Figures 2 and 3 for each of the two locations of interest show the estimation variances, 
accumulated weights, and the cokriging weights profiles. From both Figures we can clearly see that 
Intrinsic correlation model assigns the collocated secondary data weight equal to the correlation coefficient 
between primary and secondary data, the largest weight assigned to the collocated secondary data is 
obtained in Simple Cokriging with LMC and the smallest in the Collocated Simple Cokriging with Markov 
Model I. Note also that despite the LMC assigns the largest weight to the collocated data, the accumulated 
weight assigned to all secondary data is obtained in Simple Cokriging with LMC is the smallest, the largest 
accumulated weight assigned to secondary data (one - collocated) is obtained in Collocated Simple 
Cokriging. The largest accumulated weight assigned to the primary data is obtained using Linear Model of 
Correnalization; the smallest is obtained using Markov Model. Intrinsic Correlation model provides an 
intermediate case in-between the other two correlation models also in terms of estimation variance. The 
smallest estimation variance is obtained in Simple Cokriging with LMC, the largest in Collocated Simple 
Cokriging.  

Results: Estimation 

Now let us consider estimation of the entire domain of study. Figure 4 shows the maps of estimates (means 
of the local conditional distributions) and estimation variances (variances of the local conditional 
distributions) obtained based on the Collocated Simple Cokriging with Markov model I, Simple Cokriging 
with the intrinsic correlation model and Simple Cokriging with the linear model of corregionalization.  
From Figure 4 we can note that result of Collocated Simple Cokriging with Markov model I and Simple 
Cokriging with the intrinsic correlation model estimation are very similar; Simple Cokriging with the linear 
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model of corregionalization results in more unsmooth estimates than obtained by the other two approaches 
and in smaller estimation variance. To assess further difference, the maps of the difference between 
Collocated Simple Cokriging with Markov model I and Simple Cokriging with the intrinsic correlation 
model and the difference between Simple Cokriging with the linear model of corregionalization and Simple 
Cokriging with the intrinsic correlation model are prepared for the estimates and their estimation variances. 
Figure 5 shows results. From Figure 5 we can confirm that indeed Collocated Simple Cokriging with 
Markov model I and Simple Cokriging with the intrinsic correlation model results in very similar estimates. 
The estimation variances are also close for these two methods, however Simple Cokriging with the intrinsic 
correlation model is always the same or slightly smaller than that of Collocated Simple Cokriging with 
Markov model. From Figure 5 we can also note that Simple Cokriging with the linear model of 
corregionalization can result in significantly different estimates and, moreover, the estimation variance of 
Simple Cokriging with the linear model of corregionalization is always the same or slightly smaller than the 
estimation variance of Simple Cokriging with the intrinsic correlation model. That is, the local conditional 
ditributions of uncertainty obtained by the Simple Cokriging with the linear model of corregionalization are 
almost always narrower than the local conditional distributions obtained in Simple Cokriging with the 
intrinsic correlation model. Therefore, we can see that there is a trade off between simplicity of the Simple 
Cokriging with the intrinsic correlation model and width of the local uncertainty distributions.  

Conclusions 

In this paper a comparative study of Simple Cokriging with three different correlation models were 
considered: Linear Model of coregionalization, Intrinsic Correlation Model and Markov model were 
applied in cokriging to obtained estimates and estimation variances for a small domain under study. 
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Figure 1: Locations of 12 primary data (top left) and their distribution (top right), the crossplot between 
primary data and collocated secondary data (bottom left) and the map of exhaustive secondary data (bottom 
right). 
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 Sum of 
Primary 
Variable 
Weights 

Sum of 
Secondary 
Variable 
Weights 

Weight 
received by 
Collocated 

Data 

Sum of 
Cokriging 
Weights 

 
Estimate 

 
Estimation 
Variance 

CCSK 0.2974 0.4650 0.4650 0.7625 0.2528 0.6976 
CSK 

(Intrinsic) 
0.3875 0.3062 0.5000 0.6938 0.1735 0.6817 

CSK (LMC) 0.4511 0.1246 0.9715 0.5757 -0.0331 0.5961 
b) 

Figure 2: a) Study domain with a) conditioning data (circles) and the estimation location (10, 10) (square); 
Primary data weights as a function of the ordered conditioning data, ordered according to the closeness to 
the estimation location (first column) and secondary data weights as a function of the ordered conditioning 
data, zero stands for the estimation location (second column).  
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a) 

 
 

 Sum of 
Primary 
Variable 
Weights 

Sum of 
Secondary 
Variable 
Weights 

Weight 
received by 
Collocated 

Data 

Sum of 
Cokriging 
Weights 

 
Estimate 

 
Estimation 
Variance 

CCSK 0.3824 0.4497 0.4497 0.8321 -0.5751 0.6746 
CSK 

(Intrinsic) 
0.4933 0.2534 0.5000 0.7466 -0.5270 0.6527 

CSK (LMC) 0.5789 0.0683 1.2575 0.6472 -1.0345 0.5153 
b) 

Figure 3: a) Study domain with a) conditioning data (circles) and the estimation location (35, 35) (square); 
Primary data weights as a function of the ordered conditioning data, ordered according to the closeness to 
the estimation location (first column) and secondary data weights as a function of the ordered conditioning 
data, zero stands for the estimation location (second column). 
 



116-10 

 
Figure 4: The maps of estimates (left) and estimation variances (right) obtained based on the Collocated 
Simple Cokriging with Markov model I (top), Simple Cokriging with the intrinsic correlation model 
(middle) and Simple Cokriging with the linear model of corregionalization (bottom).  

 

 
Figure 5: The maps of the difference in means (left) and variances (right) for Collocated Simple Cokriging 
with Markov model I and Simple Cokriging with the intrinsic correlation model (top) and for Simple 
Cokriging with the linear model of corregionalization and Simple Cokriging with the intrinsic correlation 
model (bottom). 


