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Facies modeling precedes petrophysical property modeling since porosity and permeability are highly 
related to facies type.  Integration of secondary data with direct facies observations provides more realistic 
models.  Cokriging is a traditional geostatistical way to incorporate secondary variable.  However, 
generalized linear regression model between primary and secondary variable is inadequate especially 
when mixing indicator primary and continuous secondary variable.  The scale inconsistency between 
primary and secondary data is also an issue.  Secondary data have limited vertical resolution, but 
relatively high areal resolution.  Primary data has high vertical resolution, but limited areal coverage.  In 
this work, we propose a new method based on Bayesian updating rule to combine primary with secondary 
data.  Large-scaled probability cubes are generated first and fine-scaled probability cube is updated with 
large-scaled probabilistic data.  Sequential simulation is performed to generate multiple realizations based 
on the updated distribution. 

Introduction 

The identification and mapping of facies is important to reliable reservoir characterization because the 
porosity and permeability are highly correlated with facies type.  Knowledge of facies constraints the range 
of variability in porosity and permeability and moreover facies type constraints fluid saturation.  In this 
work, our concern is to construct realistic 3-D distributions of the facies that may be used in subsequent 
reservoir decision making. 

Facies identification is primarily based on the inspection of well-log data that provide exact facies type at 
only well location.  Well-log data has limited horizontal resolution although high resolution in vertical.  
Seismic data usually of great value in constraining facies models; it is a really extensive over the reservoir 
and can be sensitive to facies variations.  Seismic-derived attribute such as acoustic impedance of course 
show variations according to facies type.  Integration of well-data and seismic attributes could give more 
reliable construction of 3-D facies distribution. 

The use of co-kriging is a traditional way to integrate primary and secondary variable.  In the framework of 
co-kriging, integration of secondary data is based on the auto-covariance and the cross-covariance between 
primary and secondary variables.  Co-kriging approach, however, requires tedious joint modeling of 
primary and secondary variables.  Besides, the joint modeling of variogram is inadequate especially when 
modeling mixture of discrete primary and continuous secondary data.  

In this work, we propose a new technique to integrate hard primary and soft secondary data.  A new method 
does not depend on co-kriging and does not require joint modeling of variogram.  Instead, we build a local 
posteriori ccdf of each facies with Bayesian updating rule over all grids.  Finally, sequential simulation is 
performed based on the posteriori ccdf.   

Methodology 

This paper aims to stochastic model 3-D facies by combining well hard data and soft secondary data.  The 
posteriori ccdf of each facies is built and sequential simulation is made based on the ccdf over all modeling 
grids.  To simplify the discussion, we consider two facies coded as integer 0 and 1.  Multiple attributes of 
seismic data are used as secondary variable.  Seismic amplitude is a representative attribute derived from 
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raw seismic data.  Acoustic impedance also can be obtained by seismic data inversion and it is a good 
measurement of facies.  We specify secondary variables as y1(u) and y2(u), u ∈ entire domain.  Facies type 
is completely specified by the indicator i being either 0 or 1.  Associated with each modeling grid, 
secondary variables exist which is assumed to provide indirect measurement of facies.  Figure 1 shows the 
schematic diagram of scale difference between primary and secondary in vertical direction.  Scale in 
horizontal direction is assumed to be same for the variables. 

The target probability to be estimated at the location u is expressed by 
*

0 1 1 2( ) ( 0 | ,..., , ( ), ( ))i nP P i i i y y= = =u u u  

*
1 1 1 2( ) ( 1 | ,..., , ( ), ( ))i nP P i i i y y= = =u u u  

We call a target probability *
0( )iP= u or *

1( )iP= u  as the posteriori probability or updated probability 
conditioned to all information.  i1,…,in indicate surrounding hard primary data of the location u.  y1(u) and 
y2(u) indicate secondary variables at co-location u.  We assumed the co-located secondary variables have 
greater impact on the estimation of facies at the location than nearby secondary variables.  This assumption 
is reasonable since the secondary variables have usually larger volume support than modeling cell size 
hence co-located secondary variables have maximum information about the facies estimated at modeling 
grid u. 

The inference of the posteriori probability is divided into several steps as following Bayesian 
decomposition, 
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The second term, P(y1(u),y2(u)|i = 0,i1,…,in), is approximated as P(y1(u),y2(u)|i = 0) because the estimated 
facies type at the location u is only correlated the secondary variables at that location.  Thus, we have 

 *
0 1 1 2( ) ( 0 | ,..., ) ( ( ), ( ) | 0) ( )i nP P i i i P y y i C= = = =u u u ui  for facies i = 0 (1) 

*
1 1 1 2( ) ( 1 | ,..., ) ( ( ), ( ) | 1) ( )i nP P i i i P y y i C= = = =u u u ui  for facies i = 1 

where, the unknown term C(u) = 1 1 1 2( ,..., ) / ( ,..., , ( ), ( ))n nP i i P i i y yu u is location dependent, but is 
independent of facies.  The posteriori probability equation (1) can be interpreted as the product of two 
conditional probabilities.  The first term is a probability of facies given primary hard information and the 
second term is joint probability of y1 and y2 at location u given specific facies type.  The first term is 
referred to as a priori distribution that is obtained from only primary well data.  Indicator kriging is a one 
way to build a priori distribution.  The second term is referred to as a secondary likelihood distribution.  
Likelihood distribution needs to model joint facies-conditional probability, P(y1(u),y2(u)|i = 0) and 
P(y1(u),y2(u)|i = 1).  We estimated the secondary likelihood using Lamda-model discussed in paper 105 and 
205 in this report.  The Lamda-model decompose the joint conditional probability P(y1(u),y2(u)|i = 0) and 
P(y1(u),y2(u)|i = 1) into the product of each conditional probability with redundancy weights λ1 and λ2, 

P(y1(u),y2(u)|i = 0)= P(y1(u)|i = 0)λ1⋅P(y2(u)|i = 0)λ2  for facies i = 0 

P(y1(u),y2(u)|i = 1)= P(y1(u)|i = 1)λ1⋅P(y2(u)|i = 1)λ2  for facies i = 1 
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How to optimize the redundancy weights are discussed in paper 105 and 205 in this report so that we do not 
want to introduce details here.  The constant C(u) term is obtained by the probability property 

*
0( )iP= u + *

1( )iP= u = 1.   

Overall, the posteriori probability is the combination of the influence of primary and secondary variables.  
Advantage of this approach is that we can adopt the most appropriate method to build a priori and 
secondary likelihood for the considered primary and secondary data.  For instances, a priori distribution can 
be obtained using training image provided that the underlying geology is too complex to model using 
indicator kriging.  To obtain secondary likelihood is similar to the process of supervised image 
classification so that many image processing techniques or statistical methods can be applied even though 
those techniques are demanding computational efforts. 

Sequential Simulation 

Locally updated probability using primary and secondary information is obtained by equation (1).  Now we 
advanced the new approach to be applicable in the sequential simulation context.  Let us consider the first 
two simulation node be u’ and u’’.  The local posteriori distribution of facies at u’ is built, 

*
0 1 1 2( ') ( 0 | ,..., ) ( ( '), ( ') | 0) ( ')i nP P i i i P y y i C= = = =u u u ui  

*
1 1 1 2( ') ( 1 | ,..., ) ( ( '), ( ') | 1) ( ')i nP P i i i P y y i C= = = =u u u ui  

i1,…,in indicate the surrounding primary data nearby the simulation node u’.  Random number in [0,1] is 
generated and assigned to the posteriori ccdf.  Facies realization is created at node u’.  For a next node u’’, 
the local posteriori distribution at u’’ given all conditioning information should be built.  The posteriori 
probabilities are expressed by equation (1) ,    

*
0 1 ' 1 2( '') ( 0 | ,..., , ) ( ( ''), ( '') | 0) ( '')i n uP P i i i i P y y i C= = = =u u u ui  

*
1 1 ' 1 2( '') ( 1 | ,..., , ) ( ( ''), ( '') | 1) ( '')i n uP P i i i i P y y i C= = = =u u u ui  

A priori distribution at node u’’ is constructed based on i1,…,in data and the previously simulated facies 
type iu’.  However, the tricky case is that the simulation node u’ and u’’ are inside within the same large 
secondary block.  Let’s see the Figure 2 in detail.  Scale of primary and secondary in lateral is same as 
modeling grid size.  Vertical scale of secondary variables is four times than that of primary variable so that 
four small cells are included within one secondary large cell.  The local posteriori distribution of each 
facies at first node u’ is built using equation (1).  Facies realization at node u’ is drawn as .  In the next 
simulation node u’’, the conditioning information comprehend original primary data i1,..,in and the 
previously simulated iu’ and co-located secondary variables.  In this example, y1(u’’) and y2(u’’) are equal 
to y1(u’) and y2(u’), respectively since u’ and u’’ are included in the same secondary variable block.  In 
simulation node u’’, the approximation is not valid anymore.  The co-located secondary variables are 
related to co-located facies as well as the previously simulated facies (see the valid approximation equation 
of Figure 2 (B)).   

The secondary likelihood distribution that we derived in equation (1) is different from the new secondary 
likelihood noted as valid approximation in Figure 2 (B).  New form of likelihood distribution is difficult to 
be estimated.  It requires modeling of joint probability given facies type at multiple locations, such as 

1 2 ' ''( ( '''), ( ''') | 0, , ) ( ''')P y y i i i C= u uu u ui  where '''u  is the current simulation node, 'iu and ''iu are 

previously simulated facies, and cell locations 'u , ''u , '''u  are included within same large secondary cell.  
We have proposed a sequential indicator simulation algorithm that can still use the equation (1) accounting 
for a priori and likelihood distribution.  The posteriori distribution is estimated over the entire modeling 
cells first.  In estimation mode, there is no scale inconsistency related problem discussed in Figure 2.  After 
that, spatially correlated probability values are generated and these values are assigned to the inverse ccdf 
to create facies realization.  This simulation process is called p-filed simulation which has the following 
procedures: 

1. Calculate conditional probabilities using secondary variables. 
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 e.g., P(y1(u)|i = 0), P(y2(u)|i = 0) 

2. Integrate conditional probability to generate secondary likelihood.  This integration process could 
use Lamda-model, simple PR-model and Tau-model(See the reference paper ) 

 e.g. P(y1(u),y2(u)|i = 0) = Φ[ P(y1(u)|i = 0), P(y2(u)|i = 0) ], Φ is an integration model 

3. Apply indicator kriging or training image to primary data in order to estimate a priori probability  

 e.g. P(i = 0|i1,…,in) 

4. Build the posteriori probability using equation (1) over all modeling cells. 

5. Generate spatially correlated probability values [0,1] over cells, p(u) 

6. Apply correlated random p-value to the inverse cumulative posteriori distribution built in step 4 
and assign facies realization to each simulation node. 

 e.g. iu = * 1( ( ))F p− u , iu is a facies realization at u, * 1F −  is an inverse ccdf of the 
 posteriori distribution 

7. Finish the first facies realization 

8. Go to step 5 and 7 for the next realization 

This sequential simulation process involves two main steps; one is to build the posteriori distribution once 
regardless of the number of realization.  The other is to generate correlated probability field according to 
realization number and this p-value accounts for spatial inter-dependency. 

Examples 

A 50 × 50 × 20 3-D synthetic test examples are considered for the evaluation of a new method.  One 
Gaussian variable was simulated first with 50 × 50 × 20 grids.  Other two Gaussian variables were 
simulated at 50 × 50 × 5 with retaining correlation(ρ = 0.65) to the first simulation.  The first simulation is 
used to make primary hard data and the other simulations are used as soft secondary data.  Over the entire 
grids, we assigned integer code 0(noted as sand) if the simulated value is less than 0 and assigned code 
1(noted as shale) if the simulated value is greater than 0.  And 20 wells were randomly selected as primary 
sampling location.  Figure 3 describes primary data.  Extent of modeling area is 50m × 50m × 20m and 
modeling cell size is 1m × 1m × 1m.  Each well samples facies type at every 1m depth hence total primary 
indicator data is 400(=20 well locations × 20 samples at each well).  Figure 4 represents the variogram of 
facies 0 in horizontal and in vertical direction.  Figure 5 and 6 illustrates the simulated secondary 1 and 
secondary 2 data.  Horizontal resolution is same as primary data(or modeling grid resolution), but vertical 
resolution of secondary data is coarser than primary data.  Total sample number is 12500(= 50 × 50 × 5). 

As a first step, we built facies-conditional probability such as P(y1(u)|i = 0), P(y1(u)|i = 1) and P(y2(u)|i = 0), 
P(y2(u)|i = 1).  Secondary data values are extracted at facies 0 sampled locations and histogram of those 
values is built.  Smoothed histogram is produced based on the data histogram.  Figure 7 shows the 
calibration of facies proportion using secondary variables.  Solid line is a smoothed histogram estimated 
based on the data histogram corresponding to facies type(0 or 1).  From the smoothed histogram, we 
extracted a probability P(i = 0 |y1(u’)) or P(i = 0 |y2(u’)) given secondary variable y1 or y2 at location u’.  
Facies-conditional probability at location u’ is obtained by 

1 1
1

( 0 | ( ')) ( ( '))( ( ') | 0)
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P i y P yP y i
P i

=
= =

=
u uu  and 1 1

1
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P i y P yP y i

P i
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= =
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u uu  

2 2
2

( 0 | ( ')) ( ( '))( ( ') | 0)
( 0)

P i y P yP y i
P i

=
= =

=
u uu  and 2 2

2
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=
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=
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These calibrated probability is then integrated to produce the secondary likelihood probability 
P(y1(u),y2(u)|i = 0) and P(y1(u),y2(u)|i = 1) through data integration model.  We used the Lamda-model to 
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integrate and Figure 8 represents the integrated facies distribution in 3-D.  Estimated λ1 and λ2 weights 
through the Lamda-model are 0.298 and 0.495, respectively. 

The posteriori distribution is the product of a priori and likelihood distribution.  Figure 9 illustrates the 
posteriori probability of facies 0 in 3-D.  A priori distribution is obtained by indicator kriging and 
integrated with secondary likelihood to produce the updated probability.  One realization of correlated 
probability value is shown in the Figure 9.   

Two facies realizations using the considered simulation method are shown in the Figure 10.  To check the 
update after considering secondary variable, we plot realizations from SISIM in the left column.  As a way 
to evaluate the simulation method, spatial structures and global proportions of each facies should be 
reproduced.  Figure 11 shows the reproduction of variograms.  Solid line is the modeled variogram and 
dashed lines are calculated variogram from 10 realization.  Dots indicate experimental variogram calculated 
using the original sparse data.  Variogram reproduction in horizontal and in vertical direction is checked.  
10 realizations obtained from the proposed method show low uncertainty with retaining good accordance to 
the modeled variogram.  Reproduction of global proportion is also checked with 10 realizations. 

Table 1: Global proportions of facies are estimated from 10 realizations 

 Original data 10 realization with SISIM 10 realization with the 
proposed method 

Facies 0 0.4325 0.470 0.419 

Facies 1 0.5675 0.531 0.581 

Discussions and Conclusions 

3-D facies model was built using primary data and large-scaled secondary data.  The considered method is 
based on Bayesian updating process.  In Bayesian updating process, a priori distribution and secondary 
likelihood distribution were obtained separately.  The updated distribution is the product of the two 
distributions.  Sequential facies simulations were generated based on the posteriori distribution that resulted 
from the proposed method.  Scale inconsistency between primary and secondary caused a problem in 
sequential simulation context.  Thus, we adopted a p-filed simulation approach.  Synthetic 3-D examples 
showed that the proposed method combines primary and secondary data and realizations based on the 
updated distribution preserved spatial structures and reproduced global proportions of facies.        
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Figure 1: Schematic diagram of scale difference in vertical direction between primary and secondary 
variables.  Different gray color represents different secondary values. 
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Figure 2: Scale inconsistency between primary and secondary variables makes it difficult to perform 
sequential indicator simulation using the equation (1) 
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Figure 3: Description of primary data. 

 
Figure 4: Standardized variogram of facies 0 in horizontal and in vertical direction. Variogram of facies 1 
is identical to the variogram of facies 0. 
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Figure 5: Simulated secondary 1 data. 
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Figure 6: Simulated secondary 2 data. 
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Figure 7: Calibration of facies proportion using secondary data. 
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Figure 8: Calibrated facies distribution from secondary 1 and secondary 2 data.  The Lamda-model is used 
to integrate two facies distribution. 
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Figure 9: 3-D cubes represent probabilities of facies 0.  A priori distribution obtained by indicator kriging 
is integrated with secondary likelihood to result in posteriori distribution.  One realization of correlated p-
values is shown.  Multiple sets of p-values are generated and used to generate multiple facies realizations. 

 
(continued in the next page) 
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Figure 10: Two resulting realizations of facies are shown.  For the comparison, SISIM realization is plotted 
as well. 
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Figure 11: Checking the variogram reproduction with 10 realizations.  


