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Prediction of local recoverable reserves is an important problem in ore reserve evaluation.  The relatively 
wide spacing of exploration data leads to unavoidable uncertainty in the grades at unsampled locations.  
Deterministic methods such as kriging do not explicitly account for this lack of perfect information and the 
anticipated selectivity of the mining operation.  We present a methodology and software for assessing 
recoverable reserves at selective mining unit (SMU) resolution over larger production panels.  These 
reserves and their uncertainty are calculated by performing matrix (LU) simulation at a fine resolution 
over panels, and then scaling these simulated models to SMU size to calculate the expected tonnage and 
average grade above several cutoffs.  Measures of uncertainty in the SMU grade distribution in the panels 
are also presented and future enhancements are discussed.   

Introduction 

This paper presents a technique to predict local recoverable reserves in a single pass without storing and 
processing multiple simulated realizations. The approach consists on considering panels of a relatively 
large size, where the distribution of selective mining units (SMUs) is estimated by locally simulating the 
grade values via the matrix decomposition (LU) method (Davis, 1987). 

We first review the existing methods for estimating recoverable reserves. Then, the proposed methodology 
is described along with the program that has been implemented.  The method of local LU has been around 
for a while (see Glacken, 1996); this paper presents the methodology and a GSLIB-like program.  The 
paper concludes with a case study where we show the use of the program and discuss possible 
enhancements and conclusions.  

Review of Existing Methods 

There are many techniques for recoverable reserves estimation.  They may be grouped into (1) global 
recoverable reserves estimation, (2) deterministic mapping, (3) probabilistic mapping, and (4) simulation.   

Global recoverable reserves estimation without any local precision is possible by correcting a 
representative data-scale histogram (Isaaks and Srivastava, 1989).  The distribution of sample values, 
usually composited to a constant volume, are used to build a declustered histogram, that is, one where the 
relative frequencies assigned to each sample are corrected to account for the spatial clustering due to 
preferential sampling commonly found in exploration campaigns. The representative histogram can be 
obtained with many techniques, such as polygonal weighting, cell declustering, and declustering based on 
the accumulation of ordinary kriging weights. This representative histogram is then corrected to account for 
the volumes of the anticipated selective mining units.  The results provide no local precision, but could be 
used to calibrate deterministic mapping.  Volume-variance relations based on average variogram values are 
used to calculate the variance reduction from the exploration data to the SMU scale. Recalling the 
expression for calculating the dispersion variance of the regionalized variable measured over a volume v  
within a larger domain of volume V : 
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of a separation vector spanning the corresponding volume v (Journel and Huijbregts, 1978). In the case of 
global recoverable reserves, the volumes of interest are v = volume of a SMU and V =volume of the entire 
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domain or deposit.  The dispersion variance reflects the expected variability around the mean of grades 
measured over volumes the size of a SMU. Once the variance of SMUs over the domain is known, the 
variance reduction factor can be calculated as:  
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The variance reduction factor is the standardized difference between the dispersion variance of points 
within the domain and blocks within the domain. Each one can be replaced by the corresponding average 
variograms and these can be simplified, since 2),( σγ =AA  and 0),( =••γ . 2σ  is the representative 
sample variance. 

A change of shape model must be applied to adjust the sample histogram, which is considered at point 
support, to the volumetric support of the SMU ( v ). Several models are available: affine correction, indirect 
lognormal correction and the discrete Gaussian model are the more popular.  The tonnage above cutoff and 
the grade above cutoff can be calculated from the corrected histograms (Figure 1). 

Deterministic mapping such as kriging or inverse distance does not account for uncertainty due to widely 
spaced data. In areas where the samples are sparse, the estimated grades appear smooth and all approach 
the local or global mean. This gives an unrealistic sense of low variability. These techniques could be 
calibrated to give similar global results to the corrected global estimation mentioned above. This is done at 
a cost of a higher conditional bias of the estimated grades as compared to the actual grades that are 
eventually mined out. Ordinary kriging with a restricted search is very common in the mining industry 
(Figure 2). 

Probabilistic mapping techniques are based on kriging and provide a local probability distribution. The 
methods include indicator kriging (IK), multivariate Gaussian kriging (MG), disjunctive kriging (DK), 
uniform conditioning (UC) and other variants.   

• Indicator kriging (Journel, 1983; Journel and Alabert, 1989) estimates the probability of not 
exceeding several cutoffs, by performing simple or ordinary kriging over indicator coded sample 
values. This procedure is repeated at different thresholds and requires the estimation and modeling 
of an indicator variogram for each cutoff. The estimated probabilities are used to construct a 
discretized conditional distribution, which allows inferring the local uncertainty at point support. 
This distribution can be corrected to account for change of support, providing a model for the local 
uncertainty of block grades. Incorporating secondary variables and managing trends is possible, 
but cumbersome.  

• MutliGaussian kriging (Verly, 1983) approaches the problem by considering that the normally 
transformed samples are distributed as a multiGaussian variable. Under this assumption, the 
conditional distributions can be calculated with ease, since the local mean and variance of the 
conditional distributions, the only parameters required to fully define the full local distribution, are 
provided by the simple kriging mean and kriging variance. The quantiles of these distributions can 
be backtransformed to give any summary statistic required for characterizing the uncertainty 
(Ortiz and Deutsch, 2004). Trends and change of support are problematic with this method, 
mainly, because of theoretical reasons: ordinary kriging should not be used for estimating the 
parameters of the local distributions, and values do not average linearly in transformed units, 
hence, change of support should not be done by block kriging the normally transformed values. 
Considering secondary variables is not straightforward. 

• Disjunctive kriging is rarely used because of its theoretical complexity (Rendu, 1980; Rivoirard, 
1994). The method estimates any function of the samples by decomposing this function in an 
infinite series of polynomials, whose coefficients must be estimated. The lack of flexible 
commercial software for using DK has provoked its selfish use in industrial applications. 

• Uniform conditioning (Remacre, 1989) aims at determining the distribution of blocks within a 
panel, by proceeding in two steps: firstly, an ordinary kriging estimation of the grades of large 
panels is done to define the local conditioning value for the second step, which is to compute the 
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distribution of block (SMU) grades within the panel, conditional to its estimated value, by means 
of a change of support model, based on a bivariate Gaussian assumption of the distribution of 
blocks and panels. This method allows accounting for local fluctuations in the average grade, but 
cannot straightforwardly account for secondary information. 

These techniques are not that common because they depend heavily on stationarity and are sensitive to 
many modeling decisions.  These techniques are awkward to implement in presence of multiple variables 
and anticipated grade control practices.  They are proven successful in cases where they can be calibrated to 
actual production data. 

The simulation alternative consists of simulating a large part of the deposit at a high resolution, scaling the 
realizations to an SMU scale and accounting for the results (Journel, 1974; Gómez-Hernández and Journel, 
1992). This is the “modern” approach to calculate the recoverable reserves. Among the advantages of this 
approach, one can mention the consistency of the fine resolution model when considering change of 
support   to several block sizes and the possibility to account for secondary variables and trends. Also, the 
simulation approach provides realizations that can be used to emulate the performance of the large volumes 
in relation to grade uncertainty, metallurgical recovery, grade control, etc. The simulated realizations allow 
accounting for joint uncertainty, that is, the uncertainty over a function that considers several points at the 
same time. Advanced applications consist of simulating the grade control procedures such as the spacing of 
grade control samples, sample error, and estimation such as blasthole kriging. 

One of the main limitations of approaching the problem of estimating recoverable reserves by simulation is 
the size of the models. This complicates the handling and storage of the models and also requires a 
significantly large CPU time to compute the large number of realizations. 

We propose an approach that keeps the advantage of a full simulation study, but allows a much faster and 
direct computation of the summary statistics of interest. 

Local LU Simulation 

Rather than simulating the full domain of interest, which can account for several millions of nodes in a high 
resolution model, we propose a local simulation approach, where panels are considered independent from 
each other and the computation of recoverable reserves is done on a SMU scale within the panels and 
considering the local information. This idea of moving neighborhood LU simulation has been around for 
some time.  The thesis of Ian Glacken (1996) presents a comprehensive review of the method (Glacken, 
1997).  

The method works as illustrated in Figure 3, by considering a panel and the SMUs within it. A single 
search is done to find the nearest samples in the neighborhood. These samples will condition the simulation 
of a high resolution local simulation, which is performed with the matrix decomposition algorithm 
considering the discretization nodes of the panel. 

The LU simulation algorithm provides an appropriate tool for the fast simulation of several hundreds joint 
realizations of the discretization points within the panel. 

The method requires: 

• Transforming the data to a standard Gaussian distribution. 

• Calculate and model the variogram of these normally transformed data. 

• Compute the covariance matrix for the locations of the available data in the search neighborhood 
and the locations of the discretizing nodes within the panel. 

• Decompose the covariance matrix via the Cholesky decomposition into a lower and an upper 
triangular matrix. This decomposition also implies that the upper triangular matriz is equal to the 
transpose of the lower triangular matrix. 

• Compute simulated values for the nodes within the panel, by multiplying the lower triangular 
matrix with a vector of random normal deviates. This operation can be quickly repeated several 
hundreds (or thousands) times. 
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• Back-transform the simulated values to grade units. 

These simulated values are then internally stored and manipulated to calculate and display relevant 
statistics. The resulting models from the LU simulation within a panel can be easily handled to calculate the 
mean grade of the panel, the distribution of SMU grades within the panel –which can be summarized as the 
variance of SMU grades with respect to the average panel grade for a specific simulation, or with respect to 
the global average value of the panel–, the expected proportion of SMUs and their grade, above a specified 
cutoff, etc. 

Since the software works like a kriging program, the size of the model is not a significant limitation. The 
only limit is derived from the number of nodes with which the panel is discretized. Furthermore, the 
manipulation of multiple realizations operates behind the scenes, easing the work of the practitioner. The 
program can be modified to provide any relevant summary statistics. 

BLUSIM Program 

The BLUSIM program was assembled from the KT3D and LUSIM codes in GSLIB with significant 
modifications to post process the local distributions. The program runs as a GSLIB program (Deutsch and 
Journel, 1998).  

Input parameters 

A parameter file is created when first run (Figure 4). 

The parameter file requires the following: 

• Information about the sample data (lines 5 to 7): Name of the datafile, columns for the coordinates 
X, Y, Z and the variable and declustering weight, trimming limits to discard missing values coded 
with a particular value. 

• Transformation options (lines 8 to 15): The program offers the possibility of using the original 
sample data or an already transformed database, name of the transformation table (for checking), 
switch to consider a reference distribution. If turned off, the transformation is done considering the 
weighted sample distribution as the reference, name of the file with the reference distribution, 
columns for variable and declustering weight on the reference distribution file, and lower and 
upper tail options. 

• Debugging  options (lines 16 and 17): Debugging level. If set to three or higher, large amounts of 
information about the calculations will be done, debugging file. It stores all the information. This 
file can be considerably large if a high debugging level is used, and as an additional feature, the 
program writes out the last full realization at point and SMU support, for checking purposes. 
These are automatically output in files: dbgsim.out and dbgsmu.out. 

• Simulation grid and discretization parameters (lines 19 to 24): Number of realizations for panel 
and SMU statistics calculations, grid definition for panel support, number of SMUs per panel, 
panel total discretization. 

• Cutoff reporting parameters (lines 25 to 26): The number of cutoffs for reporting the proportion 
and grade of SMUs within the panel, and the cutoffs considered. 

• Seed for random number generator (line 27) 

• Search parameters for nearby samples (lines 28 to 31): Minimum and maximum number of 
samples in the neighborhood for simulation, Maximum samples per octant, if octant search is on, 
and search radii and angles for the search ellipsoid. 

• Variogram model parameters (lines 32 to 34): Nugget effect and number of nested structures for 
the three-dimensional variogram model, variogram type, sill contribution, angles and ranges for 
each variogram structure considered. 
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Output results 

The program outputs a file that contains, for every panel, the following summary statistics: 

• Panel average grade 

• Average variance of the SMU grades within the panel with respect to the average grade of the 
panel for each particular realization 

• Average variance of all the SMU simulated grades (for all SMU within the panel and for all 
realizations) within the panel with respect to the average grade of the panel 

• Mean grade of SMUs above cutoffs 

• Proportion of SMUs within the panel above cutoff  

As mentioned earlier, to check the results, the program also outputs one full point and SMU realization.  

Examples 

BLUSIM can be used to provide point support statistics, by not discretizing the panel, that is, by 
considering a panel with only one SMU, with a single discretizing point at its center. A result equivalent to 
applying multiGaussian kriging at a point support is then obtained. To check the program, a dataset of 
copper grades is used. BLUSIM and KT3D are compared, when working in Gaussian units, that is, using 
the dataset already transformed to a standard normal distribution as input.  Figure 5 shows the comparison 
of these results: 

• First, the comparison of mean and variance is done for the results in Gaussian units of BLUSIM 
and the result of performing NSCORE transformation of the sample values and then running 
KT3D for the estimation of the ordinary kriging mean and variance of the points. Slight 
differences are due to precision in BLUSIM, since only 1000 realizations of the point values are 
calculated. KT3D provides the exact calculation of the variance.  

• Second, a comparison of block simulation in Gaussian units is done. A bias in the estimation of 
the variance can be seen for high valued blocks, which can be explained by the difficulty in 
obtaining by simulation very high values to reproduce correctly the true variance obtained by 
multiGaussian kriging. 

• Third, a point simulation of grades is done, to check if the back transformed values are correctly 
computed. These values are compared with the post-processed multiGaussian kriging results with 
POSTMG. The result is quite good and the differences can be assigned to the precision of 
BLUSIM due to the number of realizations (1000) and to the post-processing of the multiGaussian 
kriging results to estimate the variance in original units. 

• The last test shows the comparison of the statistics of block simulated values computed with 
BLUSIM and those calculated by multiGaussian kriging. Notice that in multiGaussian kriging the 
back transformation is done from the Gaussian average of simulated nodes within each block and 
considering the transformation table at point support. This is not theoretically correct and it 
explains the bias in mean and variance. 

A second example is prepared to show the assessment of uncertainty that provides BLUSIM. The same 
copper data are used to compute panel grades and the dispersion of SMU grades within the panels. Results 
are illustrated in Figure 6. 

Figure 7 shows the computation of mean grades and proportions above increasing cutoffs. This allows the 
calculation of recoverable reserves above the cutoff grade and could also be used to forecast the dilution 
expected during mining, since higher SMU variability within panels implies more complicated selection in 
grade control. 

Figure 8 shows a realization of the point values and the SMU values. The obvious discontinuity seen 
between panels is explained by the fact that each panel is simulated independently hence no correlation 
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across the boundary of a panel is used to simulate the adjacent panels. However, it is clear that inside each 
panel, point grade simulated show spatial correlation. 

Discussion and Proposed Future Work 

Although this a fairly straightforward implementation of the idea of locally simulating the grades in a fine 
grid and then getting block averaged statistics for uncertainty quantification, there are several possible 
extensions that could be of interest: 

• We could enhance the method to simulate mining (add sampling errors, simulate grade control and 
dilution, simulate the scaling to trucks, classify based on the estimated grades, then report the true 
results). 

• Other measures of heterogeneity for the values within the block could be reported.  One is to 
calculate the kriged surface (in Gaussian units) and to calculate a gradient of that surface.  A 
second idea is to quantify the dispersion of the grades/SMUs within the mining volume. 

• Something is going on whenever the “proportion/tonnage of ore” differs from 0 or the full tonnage 
of the mining volume (T).  The two principal reasons are (1) uncertainty due to sparse data, and 
(2) the natural variability of the grades in the volume.  We could devise a simple measure of how 
much the Δ from 0/T is due to sparse data and how much is due to local geological variability. 

• We should report measures of uncertainty such as scaled up probability to be within a probabilistic 
tolerance – this could be used to support a geometric classification of resources. 

• Consider reading in a high resolution rock type model and simulate only within a specified rock 
type.  The program could consider only one rock type at a time.  Perhaps we simulate the entire 
block as the rock type under consideration and report a fraction of the block that the results apply 
to. 

• It may be important to consider multiple correlated variables under a full LMC or a Markov 
model.  This may be important for practical problems.  It would be easy to convert all secondary 
elements/assays to the primary one under an equivalent grade model.  More complex calculations 
that include grade tonnage curves are probably beyond the scope of our analysis. 

• An important modern consideration is the consideration of multiple ore dispositions (e.g., 
stockpile, leach, or plant).  We should at least discuss this and comment on how the approach 
could be tailored to calculate the probability that the SMUs should report to each disposition – 
associated to tonnage. 

Conclusions 

Predicting local recoverable reserves with exploration data is a critical problem.  The program presented 
here combines the best features of simulation and estimation to lead to direct predictions of local reserves. 
It allows inferring the variability of SMUs within panels and the expected proportion and grade above 
cutoff to determine the recoverable reserves.  

The methodology permits forecasting the recoverable reserves for long term planning, from drillhole 
sample data. It can incorporate other factors affecting the recovery, such as sampling errors, dilution, and 
could be adapted to better understand the uncertainty due to data sparcity and due to geological 
heterogeneity. 
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Figure 1: Point and block support distributions of copper grades. The block support distribution was 
calculated by affine correction from the point support declustered histogram. 
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Figure 2: Quantile-quantile plots showing the comparison between the distribution of block estimated 
obtained by ordinary kriging and the expected block grade distribution. As the search neighborhood is 
constrained, the distribution of estimated block grades increases its variance, appearing closer to the 
distribution of actual block grades. 
 
 
 
 
 

 
 

Figure 3: schematic 2-D illustration of the problem setting including the local neighborhood, exploration 
data, a mining volume discretized by some number of points and SMUs within the mining volume. 
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1                    Parameters for BLUSIM 
2                    ********************* 
3   
4  START OF PARAMETERS: 
5  cluster.dat                      -file with data 
6  1  2  3  4  5                    -   columns for X,Y,Z,var,wt 
7  -1.0e21   1.0e21                 -   trimming limits 
8  1                                -transform the data (0=no, 1=yes) 
9  blusim.trn                       -  file for output trans table 
10 0                                -  consider ref. dist (0=no, 1=yes) 
11 histsmth.out                     -  file with ref. dist distribution 
12 1  2                             -  columns for vr and wt 
13 0.0    15.0                      -  zmin,zmax(tail extrapolation) 
14 1       0.0                      -  lower tail option, parameter 
15 1      15.0                      -  upper tail option, parameter 
16 3                                -debugging level: 0,1,2,3 
17 blusim.dbg                       -file for debugging output 
18 blusim.out                       -file for kriged output 
19 100                              -number of realizations to generate 
20 50   0.5    100.0                -nx,xmn,xsiz - Pannel Size 
21 50   0.5    100.0                -ny,ymn,ysiz 
22 1    0.5    1.0                  -nz,zmn,zsiz 
23 5   5   5                        -nbx,nby,nbz- SMUs per Pannel 
24 3    3   3                       -x,y and z block discretization 
25 5                                -number of cutoffs for reporting 
26 0.2 0.5 0.8 1.0 2.0              -cutoffs 
27 9784585                          -random number seed 
28 4    8                           -min, max data for kriging 
29 0                                -max per octant (0-> not used) 
30 20.0  20.0  20.0                 -maximum search radii 
31  0.0   0.0   0.0                 -angles for search ellipsoid 
32 1    0.2                         -nst, nugget effect 
33 1    0.8  0.0   0.0   0.0        -it,cc,ang1,ang2,ang3 
34          10.0  10.0  10.0        -a_hmax, a_hmin, a_vert 

Figure 4: parameter file for BLUSIM. 
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Figure 5: Comparison of BLUSIM with multiGaussian kriging using KT3D of the normal scores and 
POSTMG for back-transformation. 

 
Figure 6: Location map of the copper data used for the example (top left), panel grades estimated for 40 x 
40 x 12m3 (top right), and two maps showing measures of dispersion within the panels: average variance of 
SMU grades with respect of the panel simulated grade over all realizations (bottom left) and variance of the 
simulated SMU grades with respect to the average panel value computed globally (bottom right). 
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Figure 7: Mean grades and proportions of SMU within panels above increasing cutoffs. 
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Figure 8: A point and SMU realization for checking. 
 


