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Generating recoverable reserves is a critical step in mining geostatistics.  A methodology to generate 
recoverable reserves at large panel and selective mining unit (SMU) scale will be discussed.  This paper is 
an extension of paper number 304 – Local Recoverable Reserves Prediction with Block LU Simulation.  
The software presented will expand the program, BLUSIM, to include cosimulation of multiple variables.  
The LU method of simulation allows for fast simultaneous generation of realizations for reserve 
calculation.  An LMC model for the variables is required for the multivariate version of BLUSIM.   

Introduction 

The motivation for considering an LU block simulation method is discussed in detail in paper #304 in this 
report.  To summarize: the simulation method of ore reserve calculation allows for the incorporation of 
secondary data, can be upscaled to any model resolution and can consider trends in the data.  The major 
drawback of simulation techniques is the size of the necessary fine scale model and the requirement to store 
and process the realizations.  The LU block simulation method proposed in this paper allows for the 
simultaneous generation of all necessary realizations and eliminates the need to store realizations.   

BLUSIM is modified to incorporate simulation of multiple variables at multiple locations in one step.  This 
will allow for the incorporation of (1) data of different types and (2) different variables.  (1) Often there are 
discrepancies between blast hole and exploration drill hole data for the same variable.  Incorporating a 
multivariate version of block LU simulation allows the modeler to consider data of different types 
simultaneously; for example, blasthole data would be used as a secondary correlated variable for the 
simulation of the more reliable diamond exploration data.  (2) Often there are many secondary variables 
that can provide additional information to the variable of interest.  In this instance the multivariate version 
of block LU simulation can be used to better inform the variable of interest with the secondary information. 

A program, BLUSIM_MV, will be discussed that requires an LMC model to define the multivariate 
distribution between any number of data types and generates estimates of panel mean and variance with 
block LU simulation.  The multiple variables used need not be colocated.  A case study of a nickel deposit 
with four variables of interest will highlight the usage of the program in the multivariate sense. 

Methodology 

This methodology will consider a local independent LU simulation of the panels.  Data near each panel are 
used to simulate in the panel and the corresponding panel mean and variance are stored.  This eliminates 
the need to store the high resolution geostatistical model.  Moreover, LU simulation is used because it is an 
efficient algorithm for a small number of nodes.  It would be inappropriate to use LU simulation to generate 
a high resolution model of the entire field because of the size of the resulting fine scale model; therefore, 
each panel is discretized and LU simulation is performed independently within each panel to generate the 
fine scale model. 

LU simulation has been developed for the joint simulation of multiple data locations (see paper 304 in this 
report), but it requires modification to consider simulating multiple data types at multiple locations within 
the panel.  The LU simulation of multiple locations considering only one variable requires the following 
covariance matrix: 
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C contains four smaller sub matrices, C11, C12, C21 and C22 (with C12= C21
T).  The C11 matrix contains the 

data to data covariance, equation 2.  The C12 matrix contains the data to simulation location covariance, 
equation 3.  The C22 matrix contains the simulation location to simulation location covariance, equation 4.   
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where the u indicates the n data locations and v denotes the m simulation locations in the panel. 

Now, consider the addition of multiple data types.  The C11 matrix will now contain the cross-covariance 
between all data types and the number of simulation locations will increase.  The matrices will have the 
following form:  
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where up indicates np data locations of variable type p and vp indicates mp simulation locations of variable 
type p. 

Once these covariance matrices are set up traditional LU simulation can be used to decompose the resulting 
C matrix and generate multiple realizations at all locations for all p data types.  Figure 1 more clearly 



 305-3 

demonstrates the meaning of the covariance matrices with an example.  The symbols are used to denote 
data and simulation locations of different types and the necessary covariances can be visualized. 

Implementation  

BLUSIM_MV is a FORTRAN program that requires an input parameter file.  The details of each line of 
the parameter file (Figure 2) follow: 
Line 5   – Name of the data file. 
Line 6  – The parameter file contains a separate line for EACH data point, even collocated data must be 

reformatted to be multiple entries in the data file.  The variable type (ID) must also be indicated 
in the data file.  The ID is 1 through to the number of variables consecutively, no ID numbers can 
be skipped.  Only one column is required for the variable (ID is used to distinguish variable 
type).  A declustering weight can also be added. 

Line 7 – The number of variables must equal the highest ID of the variables in the data file.  If fewer 
variables are selected to simulate, all variables are simulated and only the requested ones are 
output. 

Line 8  – ID of the variables to simulate. 
Line 9  – Trimming limits for the variables.  The same trimming limits are placed on all data. 
Line 10 – Option to transform the data.  If the data are already transformed the output will average the 

normal scored values, it is better to let the program transform the data. 
Line 11 – File for the transformation table to be output. 
Line 12-14 – If desired, a transformation table can be included for the variables.  This is in one file with 

each column representing a different variable. 
Line 15-17 – Parameters to transform the variables.  Each line must contain 2 parameters for each variable, 

for each of these lines there will be (nvar*2) parameters on the line. 
Line 18-19 – Debugging information. 
Line 20 – Output file name. 
Line 21 – Number of realizations. 
Line 22-24 – Grid defining the panels. 
Line 25 – Number of discretization points per panel. 
Line 26 – Number of selective mining units per panel, if number of discretization points divided by number 

of SMU’s in each direction is not a whole number there will be fewer discretization points in 
some SMU blocks and the output will be nonsensical. 

Line 27-30 – Cutoffs to report and option to consider equivalent grade.  Requires a factor for each data 
simulated. 

Line 31-32 – Option to write out all SMU realizations, if there are many realizations this file may be large. 
Line 33 – Random number. 
Line 34 – Minimum and maximum number of data to use in simulation.  This can be different for each 

variable type considered.  To consider only one min/max based on the total number of data 
rather than by data type, the third number should be set to -1. 

Line 35 – Consider an octant search. 
Line 36-37 – Search information.  This will be used for all data types. 
Remaining lines – These lines define an LMC.  Any LMC defined must be positive definite and is checked 

by the program.  To consider a Markov Model, specify it in the form of cross 
variograms (i.e. multiply the contributions of the structures by the correlation). 
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Case Study 

The following case study will demonstrate the methodology.  The available data is a nickel deposit with 
four variables (Ni, Fe, MgO and Co, data is shown in Figure 3).  All variables will be simulated at the panel 
scale and the resulting distributions analyzed. 

First, an LMC must be developed.  It is often tedious to generate an LMC for four variables as a total of 10 
variograms must be modeled while maintaining positive definiteness.  VARFIT_LMC will be used to 
automatically fit the LMC of the 4 variables of interest.  Figure 4 shows the resulting LMC after each 
variable has been normal score transformed. 

The panel scale averages are shown in Figure 5.  Moreover, BLUSIM (univariate) was considered for each 
variable where all variables are simulated independently; the resulting panel scale distributions can be 
compared to the multivariate case (Figure 6).  

Recall that LU simulation was selected because it is efficient for solving small matrices.  When considering 
multiple data types and large levels of discretization, the resulting LU simulation can become CPU 
intensive.  Figure 7 shows how the CPU time for BLUSIM_MV varies with the input parameters.  The 
basic parameters for the time trails follow: 

• Number of discretization points per panel = 8 (2x2x2) 
• Number of variables = 3 
• Number of panels = 400 
• Maximum number of data used = 15 (5+5+5) 
• Number of realizations = 1000 

For each graph in Figure 7 one of the above parameters is varied while the others remain constant. 

The program CPU time is linearly dependent on the number of variables, panels and simulations; there is a 
cubic relationship to the number of data used in simulation and the number of discretization points.  
Examining the coefficients of the fitted functions in Figure 7 it can be seen that number of data types used 
has a large effect, an increase from 1 to 4 data types quintuples the CPU time.  Moreover, the number of 
discretization points also has a significant impact on the CPU. 

Conclusions and Future Work 

A program to use LU simulation to simulate the panel scale distribution of multiple variables 
simultaneously has been presented.  The panels are discretized and the mean, variance, grade above a cutoff 
and equivalent grade for a panel are calculated.  This saves the memory requirements of storing the fine 
scale model.  Each panel is simulated independently.  The resulting panel distributions (Gaussian mean and 
variance) can be used in further transfer functions or to calculate reserves/resources. 

Future work for this algorithm will focus on improving CPU speed.  The first idea is to only simulate the 
variables of interest, currently all variables are simulated.  The C22 matrix would consider the discretization 
points of only those variables that are to be output.  This will reduce the size of the matrix if the number of 
variables of interest is smaller than the total number of variables available.  The second idea is to invert a 
submatrix of C only once and will take advantage of the structure of the C matrix; C22 is constant.  It would 
be possible to take the inverse of C22 once and use linear algebra with the inverse of C11 to find the inverse 
of C.  Because C22 is a large portion of C, this will significantly improve CPU speed, at each panel only the 
inverse of the smaller matrix C11 is required. 
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Figure 1: Example showing details of covariance matrices.  The example on the left has 5 data (3 of type A 
and 2 of type B).  Simulation will be performed in the panel (mining volume) at 18 simulation locations (9 
of type A and 9 of type B).  The resulting covariance matrices are shown on the right.  Recall C12=C21

T. 

 
1                    Parameters for BLUSIM_MV 
2                    ************************ 
3  
4  START OF PARAMETERS: 
5  data.dat                  - file with data 
6  4 5 6 9 8 10              - columns for X,Y,Z,varID, var,wt  
7  3 2                       - number of variables, number to simulate 
8  1  3                      - ID of variables to simulate 
9  -1   1.0e21               - trimming limits 
10 1                         - transform the data (0=no, 1=yes) 
11  blusim.trn               - file for output trans table 
12  0                        - consider ref. dist (0=no, 1=yes) 
13  histsmth.out             - file with ref. dist distribution  
14 1  2 3 4 5 6 7 8          - columns for vr1 and wt1, vr2 and wt2... 
15 0 1 1 9 2 20              - zmin,zmax(tail extrapolation)  
16 1 20 1 20 1 20 1 20       - lower tail option, parameter  
17 1 1 1 1 1 1 1 1           - upper tail option, parameter  
18 0                         - debugging level: 0,1,2,3 
19 blusim.dbg                - file for debugging output 
20 blusim.out                - file for output 
21 1000                      - number of realizations to generate 
22 10  50 100                - nx,xmn,xsiz - Panel Size 
23 10  50 100                - ny,ymn,ysiz 
24 10  50  20                - nz,zmn,zsiz 
25 3 3 3                     - nbx,nby,nbz- SMUs per Panel 
26 6 6 6                     - x,y and z block discretization 
27 2                         - number of cutoffs for reporting 
28 4 5                       - cutoffs, will report statistics for information above 
29 0                         - option to consider equivalent grade 
30 1 0.8 0.6                 - for each variable SIMULATED need a factor 
31 0                         - option to output all SMU realizations (0=no) 
32 SMUreals.out              - file for the SMU realizations 
33 67515                     - random number seed 
34 1 10 1 10 1 10  1 10      - min, max data for Kriging 
35 0                         - max per octant (0-> not used) 
36 155 155 155               - maximum search radii 
37  0.0   0.0   0.0          - angles for search ellipsoid 
38 1 1                       - Semivariogram for 1 and 1 
39 2 0.001                   - nst, nugget effect 
40 1 0.892 35.0 0.0 0.0      - it,cc,ang1,ang2,ang3 
41   37.796  30  3.7796      - a_hmax,a_hmin,a_vert 
42 1 0.107 35.0 0.0 0.0      - it,cc,ang1,ang2,ang3 
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43   195.610  156.488  19.56 - a_hmax,a_hmin,a_vert 
44 1 2                       - Semivariogram for 1 and 2 
45 2 0.001                   - nst, nugget effect 
46 1 0.340 35.0 0.0 0.0      - it,cc,ang1,ang2,ang3 
47   37.796   30  3.7796     - a_hmax,a_hmin,a_vert 
48 1 0.239 35.0 0.0 0.0      - it,cc,ang1,ang2,ang3 
49   195.610   156.488 19.56 - hmax,a_hmin,a_vert 
50 1 3                       - Semivariogram for 1 and 3 
51 2 0.001                   - nst, nugget effect 
52 1 -0.295 35.0 0.0 0.0     - it,cc,ang1,ang2,ang3 
53   37.796    30  3.7796    - a_hmax,a_hmin,a_vert 
54 1 -0.170 35.0 0.0 0.0     - it,cc,ang1,ang2,ang3 
55   195.610   156.488 19.56 - hmax,a_hmin,a_vert 
56 2 2                       - Semivariogram for 2 and 2 
57 2 0.001                   - nst, nugget effect 
58 1 0.426 35.0 0.0 0.0      - it,cc,ang1,ang2,ang3 
59   37.796    30  3.7796    - hmax,a_hmin,a_vert 
60 1 0.573 35.0 0.0 0.0      - it,cc,ang1,ang2,ang3 
61   195.610   156.488 19.56 - hmax,a_hmin,a_vert 
62 2 3                       - Semivariogram for 2 and 3 
63 2 0.001                   - nst, nugget effect 
64 1 -0.409 35.0 0.0 0.0     - it,cc,ang1,ang2,ang3 
65   37.796    30  3.7796    - hmax,a_hmin,a_vert 
66 1 -0.391 35.0 0.0 0.0     - it,cc,ang1,ang2,ang3 
67   195.610   156.488 19.56 - hmax,a_hmin,a_vert 
68 3 3                       - Semivariogram for 3 and 3 
69 2 0.001                   - nst, nugget effect 
70 1 0.675 35.0 0.0 0.0      - it,cc,ang1,ang2,ang3 
71   37.796    30  3.7796    - hmax,a_hmin,a_vert 
72 1 0.324 35.0 0.0 0.0      - it,cc,ang1,ang2,ang3 
73   195.610   156.488 19.56 - hmax,a_hmin,a_vert 

Figure 2: Parameter file for BLUSIM_MV. 

 

 
Figure 3: Location of data for the case study. 
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Figure 4: 10 variograms and cross variograms that define the LMC for 4 variables of interest (variable 1 = 
Ni, variable 2 = Fe, variable 3 = MgO, variable 4 = Co). 
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Figure 4 continued: 10 variograms and cross variograms that define the LMC for the 4 variables of 
interest (variable 1 = Ni, variable 2 = Fe, variable 3 = MgO, variable 4 = Co). 
 
 

 
Figure 5: Above left, one point scale realization of Nickel.  Above right, one SMU scale realization of 
Nickel.  Below left, the panel scale mean of Nickel, each panel is the average of 1000 realizations at the 
point scale.  Below right, the panel scale variance of Nickel. 

  

Variable 3 – Variable 4 

Variable 4 – Variable 4
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Figure 6: Above, panel scale distributions considering the LMC modeled (BLUSIM_MV).  Below, panel 
scale distributions considering that each variable is modeled independently (BLUSIM). 
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Figure 7: Time trials for the case study.  The effect of the number of discretization points, panels, data, 
data types used, and realizations is on the CPU time is shown.  
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