
 402-1

Programming Tips for Plugins

Chad Neufeld

Centre for Computational Geostatistics
Department of Civil & Environmental Engineering

University of Alberta

Working in a university based research environment is dynamic and fast-paced. The driving force is pres-
sure to devise new algorithms and techniques; the driving force in most industry applications is different.
Development of new ideas and methods takes place with any available tool. In particular, software is
never limited to one particular platform or programming style. This presents an issue for the companies
that sponsor our research and wish to implement it.

Although a company may want to try some of our new tools, they are often limited to implementing the pro-
grams in a command line based setting. This is less than ideal for most users who have become comfort-
able with a particular piece of commercial software. Software vendors are making it easier to integrate
additional functionality into their software. The Petrel Ocean API is one example.

This paper outlines some program tips for writing tools that will be included into a larger software pack-
age. An example is included showing how Fortran can be called as a subroutine or function from C#. In
most cases, only small programming changes are required so that the code can be incorporated into other
software.

Introduction

Software plays an interesting role in geostatistics. Some see it as an unfortunate necessity of what we do,
while others build their careers and companies on it. For example, universities and research groups have a
very different perspective, and need, of what software should do compared to a practitioner. In a university
setting, software is used to test new ideas, prototype algorithms or solve a very specific problem. Contrast
this to a practitioner that requires a stable and flexible tool that can be used to solve multiple problems.

At this point it would be good to clarify a few points. At the university, we divide software into 2 separate
categories: (1) tools for performing a specific task and (2) software that can perform multiple tasks. An
example of a tool is SGSIM. It has a very specific function and cannot do anything else. An example of
software is a commercial software package: Petrel, Vulcan, GOCAD, Gemcom, etc. A tool, such as
SGSIM, is bundled as part of the software package and it is used when needed from within the package.
From here on in, large software packages with be referred to as “software” or “packages” and tools will be
referred to as “tools” or “programs.”

Our vision at the university is to be the unquestioned leader in the education of geostatistical practitioners
and the development of geostatistical tools1. However, developing the most advanced tools is no good to
our sponsor companies unless they can implement the tools themselves. And, most research ideas are never
included into a commercial software package or may take years to become common enough that they will
be included; Figure 1 shows an estimate of how many research ideas actually make it into main stream use.
Some commercial software packages have just released conditional simulation modules. Simulation has
been around for over 20 years or more.

1 Introduction to the Sixth Annual Meeting of the Centre for Computational Geostatistics. September 2004.

 402-2

Research
Ideas

10-100

Tested
Protypes

10

Plugin

2-5

Commercial
Product

0-1

Figure 1: Estimate of the number of research based tools that will be included in a commercial software.

Almost all of our tools are based on GSLIB. This means that companies are limited to implementing new
tools and programs in a command line based setting. This is less than ideal for most users who have be-
come comfortable with a particular piece of commercial software. In addition, the exporting and re-
importing of data and results is error prone and time consuming.

Software vendors are making it easier and easier to integrate new tools right into their commercial pack-
ages. The new Ocean API is Petrel’s answer to incorporating additional code right into Petrel. This paper
outlines some programming tips for tools that will be included into a larger software package. An example
is included showing how Fortran can be called as a subroutine or function from C#. In most cases, only
small programming changes are required so that the code can be incorporated into other software.

A New Coding Style

The existing coding style has been based on single stand-alone programs. All programs can be broken
down into 3 steps: (1) reading the input parameters and data, (2) performing the numerical calculations and
(3) writing the output. This is perfectly acceptable for a one-use executable, but it is less than ideal when
the numerical portion will be reused in other code. It would be much better to adopt a slightly different
coding style when writing the progam.

The proposed coding style is based around DLLs (dynamic-link libraries). A core algorithm is coded and
compiled to a DLL. A program, be it stand-alone executable or a software package, assembles the data and
program parameters, calls the DLL to do the numerical calculations, and receives the output from the DLL.
The new approach requires 5 steps: (1) assembling the parameters and data, (2) calling the DLL and pass-
ing it the information from step 1, (3) the DLL does the numerical calculations, (4) the DLL returns the
output, and (5) the calling program saves the output. Figure 2 shows a flowchart with the old and new cod-
ing styles.

There are several advantages and disadvantages to adopting the new coding style. The biggest advantage is
the ability to use a central piece of compiled code. A simple stand alone executable can be written using
the DLL or a commercial package can use the exact same DLL. This means that both processes are using
the exact same algorithm. There is no worry about introducing bugs or making a mistake by copying and
pasting source code from one file to another. In the event that a bug is found, it is a lot easier to fix and
update a single DLL compared to updating multiple programs that use the same code. The disadvantages
are a more complicated coding style and that it is harder to distribute the DLL compared to a simple execu-
table. For a stand-alone program based on a DLL a minimum of 3 files are required: (1) the executable that
reads the input and writes the output, (2) the DLL itself and (3) a run-time library for the DLL (compiler
specific). Other files may be needed.

 402-3

Read program
parameters

and input data

Perform the
calculations

Write the output
to a file

Get the parameters
and input data

Call the DLL and
pass it the parameters

and data

Write the output to a
file or return it to the

calling program

Get the output
from the DLL

DLL does
the calculations

Old Coding Style New Coding Style

Figure 2: Comparison of the workflow between the old and new coding styles.

Mixed Language Programming

Moving to a modular type coding standard introduces some interesting complications. Consider using an
algorithm written in Fortran compiled in a DLL. It is easily called from another Fortran executable. How-
ever, calling the same DLL from a C program is not as simple. An interface is required telling the C pro-
gram what the Fortran DLL is expecting for input and what the DLL will return as output. With the proper
setup, a Fortran subroutine contained in a DLL can be called just like a built in C function.

There are 2 main differences between Fortran and C: (1) the way variables are passed when functions or
subroutines are called and (2) the order that arrays are stored in the computers memory. When calling sub-
routines or functions in Fortran, the variables are passed by reference. In contrast, when calling functions
in C, variables are passed by value unless it is specifically specified to pass them by reference. This creates
a problem when calling a Fortran DLL from C. This will be discussed in more detail below. The second
difference is how arrays are stored in memory. Fortran stores arrays in row-order while C stores arrays in
column-order. This will be discussed in more detail later.

These are by no means the only issues that you may encounter with mixed language programming. Visual
Basic, C++, and C# are just some of the programming languages that people have used for building appli-
cations that call Fortran DLLs. Each language will have its own issues and quirks. The remainder of this
paper focuses on calling Fortran DLLs from C#. C# is a fairly new programming language developed as
part of the Microsoft .NET framework. New GUI applications, including the Petrel API, are being written
with C#.

Building a Fortran DLL

A DLL does not contain a program. It cannot be run on its own. It must be called from a separate program.
The calling program passes the DLL parameters and data to perform the numerical calculations. In other
words, a DLL is a collection of numerical algorithms, there can be more than one algorithm in one DLL,
that can be called by any other program.

Fortran DLLs typically contain subroutines that are exposed outside of the DLL. The DLL can also contain
other subroutines and functions that are not exposed in the DLL. These private functions can only be used

 402-4

by other functions within the DLL. Consider the following subroutine in its own file; testDLL.f90. It
is a simple subroutine that calculates the sine of an input number and returns it in a separate output number.

subroutine sineT(num, sineNum)
 real(8), intent(IN) :: num
 real(8), intent(OUT) :: sineNum
 sineNum=sin(num)
end subroutine

The file testDLL.f90 can be compiled to a DLL by including a switch at compile time or by creating a spe-
cial project within the compiler’s development environment. For the Intel compiler it can be done by using
the following:

ifort /dll testFLL.f90

or by creating a DLL project in Microsoft Visual Studio.

Figure 3: Creating a DLL project in Visual Studio.

There is a problem though. Nothing inside the DLL can be used by an external program. An error would
be returned if a program were to call the DLL. A line needs to be added to the subroutine to export the
subroutine and make it visible to a calling program. This is done with a compiler directive.

subroutine sineT(num, sineNum)
 !DEC$ ATTRIBUTES DLLEXPORT::sineT
 real(8), intent(IN) :: num
 real(8), intent(OUT) :: sineNum
 sineNum=sin(num)
end subroutine

After compiling the DLL, the subroutine can be called from other programs. It would be beneficial to in-
troduce a very useful tool right now. The tool is called Dependency Walker [1]. It is a free utility for scan-
ning windows modules to determine exported functions and any dependencies that the module relies on. It
is essential for diagnosing errors related to exported function names in DLLs. The output of dependency
walker for testDLL.dll is shown in Figure 4. It shows the exported sine function and gives its name as
SINET. Note that the case of the function name is not important for Fortran. It is important for C based
applications. It also lists three required files for the DLL: libmmdd.dll, msvcr80d.dll and ker-
nel32.dll. Two of these files are part of windows. The third file, libmmdd.dll, is from Intel and
needs to be present for the DLL to run when called.

Figure 4: Dependency walker output for testDLL.dll.

 402-5

The previous example shows a very simple subroutine coded into a DLL. DLLs can be as simple or as
complex as needed. The following code shows a subroutine that accepts a 3-dimensional array as input,
allocates an additional array, does some calculations, and then deallocates the array and returns the result.
This has been tested up to approximately 30 million cells in total.

subroutine arrtest3d(nx,ny,nz,arr,ierror)
 !DEC$ ATTRIBUTES DLLEXPORT::arrtest3d
 integer, intent(IN) :: nx,ny,nz
 real(8), intent(INOUT) :: arr(nx,ny,nz)
 integer, intent(OUT) :: ierror

 real(8), allocatable :: arr2(:,:,:)
 integer :: test
 allocate(arr2(nx,ny,nz),stat=test)
 arr2=arr*2
 where(arr2 > 1000) arr=arr2
 deallocate(arr2,stat=test)
 ierror=0
end subroutine

Recall that the functions and subroutines inside a DLL must be exported before they can be used. The way
that the functions are exported must be specified in the DLL. There are several different conventions avail-
able for exporting DLLs. As you probably expected, FORTRAN and C based language have different de-
fault conventions. However, any convention can be used as long as the DLL and the calling program are
aware what that convention was. The conventions define:

1. if the arguments are passed by value or reference,

2. how the function names are formatted, and

3. if a variable number of arguments is allowed.

The convention used depends mostly on user preference, or on how the DLL will be used. The default
DLL convention is fine when Fortran will be used to call the DLL the majority of the time. This makes it
easy to use the DLL from Fortran, but harder from other languages. If a different language, such as C# or
VB, will be used to call the DLL, it may be beneficial to use a different convention. This makes it easier to
use the DLL from something like C#, but not from Fortran. The conventions are: default, C, and
STDCALL. Table 1 summarizes the differences between the DLL conventions.

Table 1: DLL convention summary

 Default C STDCALL

Arguments passed by value No Yes Yes

Variable number of arguments Yes Yes No

Case of external name Upper Lower Lower

Leading underscore added to name No Yes Yes

Number of arguments added to name No No Yes

The default convention is used when function or subroutine is exported using the following command:

 !DEC$ ATTRIBUTES DLLEXPORT::sineT

To use the C or STDCALL conventions, the following needs to be used:
 !DEC$ ATTRIBUTES DLLEXPORT, C::sineT

or
 !DEC$ ATTRIBUTES DLLEXPORT, STDCALL::sineT

 402-6

Fortran and C pass information between program components differently. Fortran passes arguments by
reference all the time, where as C passes some arguments by value and some by reference. There is no easy
way to handle this difference between C and Fortran when building and using DLLs. When using the de-
fault conventions, you will need to pass all variables explicitly be reference from C. Conversely, when
using C or STDCALL, you will need to tell Fortran to pass variables by value.

The exported function name changes depending on the standard used. For example, the exported name for
sineT with the default convention is SINET and with the STDCALL convention the name will be
_sinet@16 The exported name can also be set manually by adding the alias statement to the declara-
tion.

 !DEC$ ATTRIBUTES DLLEXPORT, STDCALL, ALIAS:'sineT' :: sineT

Recall that dependency walker can be used to verify the exported function names.

Passing Arrays

As mentioned earlier, large arrays can be passed back and forth between the calling program and a DLL
easily. There is nothing to worry about when calling a Fortran DLL from a Fortran program. The arrays
will be passed correctly. However, when passing an array from any other language to Fortran, the array
storage format is important.

Fortran stores its arrays in a column-major order while C/C++/C# store their arrays in a row-major order.
This means that Fortran arrays cycle starting with the first index while C starts with the last index. Con-
sider two different arrays: a Fortran array A(2,3) and a C# array A[2,3]. The Fortran array is stored in
memory in the following order:

A(1,1) A(2,1) A(1,2) A(2,2) A(1,3) A(2,3)

While the C array is stored in a different order:
A[1,1] A[1,2] A[1,3] A[2,1] A[2,2] A[2,3]

This means that when passing arrays from C to Fortran, the C array needs to be allocated and indexed in
reverse order in the C program. The revised C# array is A[3,2]:

A[1,1] A[1,2] A[2,1] A[2,2] A[3,1] A[3,1]

Note that the order the array elements are stored is the same as the Fortran array, except that the subscripts
are reversed.

Any dimension array can be used. Just remember to reverse the order of the indices in the array when de-
claring it and when using it in C. For example, a four-dimension array in Fortran could be defined as
SIMS(nreal, nx, ny, nz) and the corresponding C# array would be SIMS(nz, ny, nz,
nreal).

One dimensional arrays can be passed with no special consideration.

There is no need to worry about the different starting indices between C and Fortran. Users familiar with C
know that arrays are index from 0 to nx-1 while Fortran is indexed from 1 to nx. The calling program
simply passes the starting point of the array in the computers memory and the size of the array. Fortran
will index the array from 1 to nx. That is why we can pass multi-dimensional arrays between C and Fortran
by changing the index order [3].

Calling a Fortran DLL from a Fortran Program

This example illustrates calling a simple Fortran DLL from a Fortran executable. The first step was to
write a subroutine and compile it to a DLL. The following subroutine requires an input double precision
number and returns the sine of the number as output. The input number is not modified. The DLL was
exported with the alias attribute to control the name exposed in the compiled DLL

subroutine sineT(num, sineNum)
 !DEC$ ATTRIBUTES DLLEXPORT, ALIAS:'sineT':: sineT

 402-7

 real(8), intent(IN) :: num
 real(8), intent(OUT) :: sineNum
 sineNum=sin(num)
end subroutine

The next step was to write a program that used the DLL to calculate the sine of a number. The following
program imports the DLL in an INTERFACE block. The interface contains all of the input, output, and
DLL information contained in the subroutine. The only information not contained, is the calculation part of
the subroutine. Note that the DLLEXPORT has been changed to DLLIMPORT. After compiling the pro-
gram, the program runs and calls the DLL as though it were embedded in the program.

program testFortranDLL
 implicit none
 real(8) :: number, sineNumber
 INTERFACE
 subroutine sineT(num, sineNum)
 !DEC$ ATTRIBUTES DLLIMPORT, ALIAS:'sineT':: sineT
 real(8), intent(IN) :: num
 real(8), intent(OUT) :: sineNum
 end subroutine
 END INTERFACE
 number=73.0D0
 call sineT(number, sineNumber)
 write(*,'(2(f12.2))') number, sineNumber
end program testFortranDLL

Calling a Fortran DLL from a C# Program

There is a bit more work involved in calling a Fortran DLL from a C# program. The structure is very simi-
lar to the Fortran program, just with a different syntax.

The Fortran DLL from the previous example was used in the C# program. The first step in writing the C#
program is to create a class to import the DLL function. The class states the DLL file name, the function
name within the DLL to import and the input/output parameters for the DLL. It is important that the case
of the function name matches the case of the exported function in the DLL. If it does not, a DLL not found
exception will be reported at run time. The function was exported without the C or STDCALL attributes.
That means that all of the variables will be passed by reference, not by value. Since this is different that the
C default, the reference attribute is given to the input and output variables in the C# class.

using System;
using System.Collections.Generic;
using System.Runtime.InteropServices;
using System.Text;

namespace testMixedC
{
 class ccgTestDLL
 {
 [DllImport("testDLL.dll")]
 public static extern void sineT(
 [MarshalAs(UnmanagedType.R8)] ref Double inputNumber,
 [MarshalAs(UnmanagedType.R8)] ref Double sineInputNumber);
 }
 class testProgram
 {
 static void Main(string[] args)
 {
 Double number = 73.0;
 Double sineNumber = 0;
 ccgTestDLL.sineT(ref number, ref sineNumber);
 Console.WriteLine("{0} {1}", number, sineNumber);
 }
 }
}

 402-8

Conclusions

Multiple language programming has the possibility to bring many benefits to geostatistical software. They
include, but are not limited to: (1) transfer of new algorithms to CCG sponsor companies, (2) integrating
custom or new processes into commercial software, (3) building a re-usable base of common code, and (4)
an easy was to update core algorithms. Transferring new code and algorithms to our sponsor companies is
the most important. This has been done previously with standalone executables. The executables were not
user friendly and required data to be exported and then imported back into a piece of commercial software.
Now, the new algorithms can be written into a DLL and be incorporated right into a commercial software
package. For example, Schlumberger has released an API that allows additional functionality to be added
right into Petrel. This allows us to provide a graphical users interface to the end-user that looks and feels
familiar to the software that they are used to using.

References

[1] Dependency Walker. http://dependencywalker.com Accessed on July 31, 2007.

[2] J. Sharp. Microsoft Visual C# 2005 Step by Step. Microsoft Press, Redmond Washington, 2006.

[3] Using C and C++ with Fortran. University of Utah, Department of Mathematics.
http://www.math.utah.edu/software/c-with-fortran.html Accessed on August 21, 2007.

