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Factorial kriging is a technique that aims to either extract features for separate analysis or mask out 
features from spatial data.  Factorial kriging has been applied in several earth science application, 
however, most of the works were based on conventional factorial kriging which adopts ordinary kriging 
paradigm. This ordinary factorial kriging has strong constraint that forces sum of weights for the specific 
factor to be zero.  In this work, we proposed an improved factorial kriging to extract spatial components.  
Factorial simulation was implemented to correct kriging smoothness and noise filtering of seismic data was 
tested using the proposed method. Factor data integration was initially suggested in this paper which 
integrates more relevant secondary factor with primary target variable.  The considered method and 
applications were tested based on synthetic examples.  

Introduction 

The kriging interpolation algorithms aim to estimate the unsampled value of a variable in interest Z(u).  To 
apply kriging algorithm the spatial structures should be modeled, which is represented by variogram or 
equivalent covariance.  When dealing with nested variogram or covariance structures it may be of interest 
to extract specific structures such as isotropic short range feature, anisotropic long range feature or nugget 
effect.  Such filtering that excludes undesired feature and enhance the interesting feature can be achieved by 
factorial kriging.  The number of sub-features and the magnitude of that features are chosen from the 
modeled nested variogram. 

In this paper, we tested factorial kriging to identify the feature and to enhance target feature.  Conventional 
factorial kriging is first considered.  Conventional factorial kriging is based on ordinary kriging that 
assumes mean of Z(u) is unknown over domain.  Each factor is extracted using ordinary factorial kriging 
and the results are discussed.  Some drawbacks of the method are observed even though ordinary factorial 
kriging is theoretically right.  An improved factorial kriging method is proposed and tested using the same 
example.  We observed the significant difference from conventional ordinary factorial kriging.  Factorial 
kriging has smoothing effect so as simple kriging.  We proposed factorial simulation that is conditional 
factorial simulation to correct smoothness of estimated factor. 

Improved factorial kriging is also applied to filtering the noise inherent in exhaustive seismic data.  Nugget 
effect is due to measurement errors hence it should be removed.  Besides, nugget effect is also one structure 
consisting of the nested variograms.  Thus, factorial kriging system of equations can filter out the unwanted 
nugget structure through excluding nugget effect model in the right hand side covariance term of kriging 
equation (see the details in following section).    

Another application of factorial kriging is to integrate only relevant features extracted from original data.  
For some cases, global variability (large scale feature) is more important than local variability.  In that case, 
large scaled feature is extracted from secondary data using factorial kriging and then primary variable and 
extracted relevant factor are co-kriged to estimate large scaled factor.   

The applicability of the suggested method and application is tested using synthetic examples and 
effectiveness is discussed. 
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Setting 

Paper 404 in this volume introduces conventional factorial kriging and modified kt3d.exe program.  
This paper follows the notation and explanation introduced in paper 404.  Regionalized variable Z(u) 
variable consists of a sum of independent factors and a mean: 
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The L+1 standard factors Zl(u) = alYl(u) all have a mean of 0 and a variance of 1.  The al parameters are 
stationary, which means they do not depend on location.  The mean and variance of the Z(u) variable are 
given by: 
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The variance of Z(u) follows such a simple expression because m(u) is a constant and the Y factors are 
standard and independent.  These characteristics of m and Y also lead to a straightforward expression for the 
variogram of the Z(u)variable: 
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The Z(u) regionalized variable is fully specified by m(u), the L+1 al values, and the L+1 variograms γl(h).  
The unknown parameter 2

la  is magnitude of each nested structure.  As discussed in paper 404 in this 
volume, we have access to original data values Z(u) at sample location and the modeled variogram 
consisting of sub-structure.  We do not know parameter la that specifies the importance of each factor.  We 
do not have measurement of the factor Yl(u) either.  We are able to distinguish the factors if the constituent 
variograms γl(h) are different from one another.  The reasonableness of factorial kriging depends entirely 
on the fitted nested structures.  Therefore, when adopting a decomposition of sub-factors it is necessary to 
take account into physical interpretation and information.     

Ordinary Factorial Kriging (OFK) 

Conventional factorial kriging means an ordinary factorial kriging using the decomposition (1).  The 
variable Z(u) consists of factors Zl(u) and locally unknown mean m(u).  Consider the problem of estimating 
the spatial component Zl(u) of the decomposition.  The OK estimator of that spatial component is 
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lαλ  is the weights for the estimation of l component.  It is noted that l factor *( )lZ u  is estimated 

using original data Z(uα), which includes (L+1) factors and only the weights are different being associated 
with l factor.  The estimation error of l factor is 
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The constraint ,1
0n OK

lαα
λ

=
=∑  satisfies the unbiasedness condition.  The error variance of l factor is 

expressed as double linear sum being similar to simple kriging 
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The last term { ( ), ( )}lCov Z Zαu u  is reduced as 
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since l factors, l = 0,…,L, are independent each other and since covariance can be shown as summing up of 
all factor covariance such as, 
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The weights associated with l factor are obtained by minimizing the error variance under the unbiasedness 
constraint: 

 
,

1

,
1

( ) ( )

0,           0,..., ,  and 1,...,

n

l l l

n

l

C C

l L n

β α β α
β

β
β

λ μ

λ α

=

=

⎧
− − = −⎪

⎪
⎨
⎪ = = =
⎪⎩

∑

∑

u u u u
 (2) 

The mean is estimated by linear combinations of the original data: 
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The constraints on the weights to ensure unbiasedness: 
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The estimation variances are minimized subject to the constraints given in the above leading to the factorial 
kriging equations to estimate the mean: 
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There are two interesting phenomenon to note.  Ordinary factorial kriging system is very similar to ordinary 
kriging system except the right hand side covariance term.  To estimate l factor the left hand side does not 
change but the right hand side should only consider the corresponding lth covariance term.  The resulting 
weights are interpreted as how much contribution of l factor in data value Z(uα).  The other phenomenon is 

that estimated component *( )lZ u  with constraint ,1
0n
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=∑  has too small estimation variance which 
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results in smoothness, say, *var{ ( )} var{ ( )}l lZ Z<<u u .  Traditional factorial kriging is assumed to 
have locally constant unknown mean, m(u), however, there is no obvious reason why simple kriging could 
not be used. 

Simple Factorial Kriging (SFK) 

Many researchers have used factorial kriging to extract specific features or to filter out noise; however, 
most of the works were based on ordinary factorial kriging that addresses unknown mean.  We proposed a 
factorial kriging with a constant known mean value.  Locally constant unknown mean m(u) is assumed to 
globally constant known mean m(u) = m, which conforms to simple kriging paradigm.  Simple factorial 
kriging equations with no constraints are derived with minimizing the error variance: 
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Lagrange parameter that account for the non-bias constraint lμ  is removed in the simple factorial kriging.  
The simple factorial kriging system of equation is similar to simple kriging equations except the right hand 
side.  Interestingly it is noted that simple kriging weights λSK(u) is equivalent to the sum of factorial simple 
kriging weights at the location.  Let’s see the systems of simple kriging equation, 

1

( ) ( ),   1,...,
n

SKC C nβ α β α
β

λ α
=

− = − =∑ u u u u  

The RHS can be decomposed into l = 0,…,L, factors then, 

0

( ) ( )
L

l
l

C Cα α
=

− = −∑u u u u  

,
1 0 0 1

( ) ( ) ( )
n L L n

SK
l l l

l l

C C Cβ α β α β α β
β β

λ λ
= = = =

− = − = −∑ ∑ ∑∑u u u u u u  

since simple factorial kriging ,
1

( ) ( )
n

l lC Cβ α β α
β

λ
=

− = −∑ u u u u . 

Thus, we have the following equality, 

,
0

,          1,...,
L

SK
l

l

nβ βλ λ β
=

= =∑  

,which represents simple kriging estimation is equal to the sum of simple factorial estimate, say 
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Factorial Simulation with SFK 

Ordinary factorial kriging has inherent smoothing effect with sparse data and estimated mean factor 
explains the majority of the variance even with exhaustive measurements (discussed in Example).  Simple 

factorial kriging relax the unbiasedness constraints, that is ,1
0n

lαα
λ

=
=∑ , l = 0,…,L, but simple factor 

estimate has smoothness effect, too.  One possibility to correct the smoothness is to adopt simulation.  
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Every factor has different smoothness so that simulation performed factor-by-factor basis.  Data values at 
sample location are used as conditioning information.  Conditional simulation is worked based on the 
following scheme: 

Zcs(u)=Z*(u)+[Zucs(u) – Z*
uck(u)] 

where,  

 Zcs(u) is simulation value with conditioning original data Z(uα), α = 1,…,n 

 Z*(u) is kriging estimate 

 Zucs(u) is unconditional simulation value 

 Z*
uck(u) is kriging estimate using unconditional simulated values at data location 

The reason factorial simulation can be generated using the above equation is that error term, [Zucs(u) – 
Z*

uck(u)] can be generated for the specific factor l, l = 0,…,L and kriging estimate term Z*(u) can be 

obtained from summing up of estimated factors, *
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In simulation, it should be checked that conditional simulation value at data location reproduces original 
data value at that location.   
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This checking method is slightly changed into such as sum of conditional factorial simulation values should 
reproduce data value at data location because we do not know true l factor, Zl(u) at that location. 
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For arbitrary l factor, the error term *
,ucs ,uck[ ( ) ( )]l lZ Zα α−u u  goes to 0 at data location due to the 

exactitude of kriging.  Conditional simulation of l factor at data location Zl,cs(uα) is 
*

,cs ( ) ( ) 0l lZ Zα α= +u u .  Sum of conditional simulated factors at data location is equivalent to sum of 
simple kriged factor.  
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We have shown that simple kriged value at location u is equal to sum of estimated factors at that location.  
Simple kriged value at data location is equal to data value itself due to exactitude of kriging hence,   
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The above conditional factorial simulation scheme is checked. 

Geostatistical Filtering Applied to Exhaustive Data 

Random noise in exhaustive seismic data may be defined as noise which does not have a correlation 
between one point and its neighbouring points a short distance away.  Random noise appears in exhaustive 
seismic data as an apparently random placement of bright or dark pixels and obscures fine details. There are 
several kinds of noise depending on source, but all can be placed in two categories; source-generated and 
ambient noise.  Source-generated noise can take many forms, from surface waves to multiples to direct 
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arrivals and head waves.  A typical cyclic noise appears in the 2-D or 3-D seismic data in form of repeated 
stripes due to designing of repeated seismic survey.  Ambient noise can be caused artificially or naturally 
such as man-made noise, animal, air currents, nearby power lines.  This undesirable noise is purely random 
and shown as salt-and-pepper in the seismic image.  They must be removed to enhance original signal and 
identify the features. 

As shown in kriging system of equations, factorial kriging filters out the designated structures.  Long scale 
structures are removed when short range covariance is only remained in the right hand side of kriging 
equation and short scale structures are removed when long range covariance is only remained.  Nugget 
effect is also treated within very short distance as one structure consisting of the whole nested covariance.  
Nugget effect is partly due to measurement errors; therefore, it might be better to filter out the nugget effect.  
Let us assume there are three factors noted as l = 0, 1, 2.  0th factor is usually considered as nugget effect 
that is to be removed.  Filtered seismic map is achieved by the following factorial kriging system of 
equations 
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Geostatistical filtering applied to seismic data is represented in the following example section. 

Data Integration 

One potential application of factorial kriging is data integration with more relevant features.  Key concept 
is to filter out undesirable noise and artifact in the secondary data and extract relevant feature or factors 
from cleaned secondary data.  Factorial kriging of primary variable is then performed using relevant factor 
extracted from secondary data.  For example, large scale feature is important rather than locally variable 
feature in a certain case.  In that case, large scale feature is extracted from the secondary data(already 
filtered the nugget effect) which filters out short range feature using simple factorial kriging.  The extracted 
secondary feature is then used as a secondary data in order to estimate primary variable, that is: 
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where *( )lZ u  is estimated primary variable for l factor. 

 λα,l are the weights assigned for data samples to estimate l factor. 

 Z(uα) is data samples. 

 Yl(u) is the extracted relevant secondary factor at estimation location u. 

 μl is the weight assigned for secondary factor Yl(u) at estimation location u. 

This method may be called factorial collocated co-kriging since only collocated secondary factor is retained 
to estimate.  The weights are obtained by solving collocated co-kriging equations for l factor. 
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Example 

The first synthetic example is shown to show how factorial kriging approach works.  A synthetic 256×256 
2-D Gaussian variable was simulated with a small nugget effect (10%) and two isotropic spherical 
structures equally explaining the remaining 90% of the variability.  The ranges of the spherical structures 
are 16 and 64 units.  Data were sampled from the reference grid at a very close 5×5 spacing to produce 
sample data.  The reference grid and sample data are shown on Figure 1. 

As developed above, conventional factorial kriging is based on ordinary kriging.  The sum of the estimate 
of each factor adds up to the ordinary kriging estimate.  The ordinary kriging estimates are shown on Figure 
2.  Note that the ordinary kriging estimates are smoother than the reference values – a characteristic 
property of all kriging.  Note also that the data are reproduced exactly, but with an apparent discontinuity 
because of the nugget effect.   

The ordinary factorial kriging estimates the mean and each factor independently.  In this example there are 
the mean and three factors to be estimated.  Maps of the factors are shown on Figure 3.  Although the 
nugget effect map looks constant, it is not.  There is a discontinuity at each data point.  Note that the 
estimate of the mean reflects the most variability because of the unbiasedness constraints which forces sum 
of weights to be 0 for the considered factor.  Although the kriging equation and unbiasedness condition is 
right, it is unrealistic that estimated mean factor has the majority of variability.  Furthermore, estimated 
long range structure is destructed as shown in Figure 3 and has low variability. 

Simple factorial kriging estimates of each factor are shown in Figure 4.  The mean value is assumed to be 
constant overall.  Short range factor estimates have variability within short distance and long range factor 
estimates have variability within large distance in terms of visual interpretation.  Simple factorial estimates 
reflect realistic features contrary to the ordinary factorial kriging estimates.  Short range feature and long 
range features are identified significantly.  Over every estimation location, sum of all estimated factors 
reproduced simple kriged value as we have theoretically derived equation (4). 

OFK vs SFK 

It is expected to show each estimated factor has equal or close to the variability observed in the nested 
variogram.  Table 1 represents variance of each estimated factor by OFK and SFK, respectively.  This 
variance table represents how much different between OFK and SFK estimates quantitatively.  The numeric 
values show the calculated variance for each factor.  First column is the contribution of each factor obtained 
by nested variogram modeling.  Second and third column show the variance of each estimated factor with 
OFK and SFK.  The last column in Table 1 shows how much OFK smooth the estimated factor being 
compared to SFK.  The estimated mean factor using OFK has 70% variability which is the majority of 
variability.  From the table, SFK has more variability than OFK estimate and SFK produces more 
reasonable results in terms of feature identification. However, smoothing effect still exits. 

 

Table 1. Variance table for each estimated factor by OFK and SFK 

Factors bl = (al
2) OFK SFK diff in % 

mean – 0.7 0 70 % 

l = 0 (nugget) 0.1 0.0 0.0 0 % 

l = 1 (short range) 0.45 0.15 0.2 25 % 

l = 2 (long range) 0.45 0.01 0.42 95 % 

Sum of all factors 1.0 0.97 0.99 2% 

Factorial Simulation 

Factorial simulation with SFK is worked using the same synthetic data.  Three factors are considered; 
nugget factor, isotropic small scale and isotropic large scale factors.  We followed the conditional factorial 
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simulation in equation (5) to adopt conditioning information.  First of all, unconditional simulations were 
generated for each factor.  Left column in Figure 5 represents one unconditional realization for three factors.  
lth factor covariance, Cl(h) was only used when generating lth unconditional simulation instead of using 
whole covariance C(h).  The right column in Figure 5 shows the resulting conditional simulation.  0th 
factor(nugget effect) simulation seems constant overall, but they have values with very low variance.  Table 
2 is same as Table 1 except inserting the last column for conditional simulation results.  For the first 
realization, we calculated variance of each estimated factor and observed smoothness effect inherent in all 
kriging estimate is reduced. 

 

Table 2. Variance table for each estimated factor with OFK, SFK, and  conditional simulation 
using SFK.  The first realization is selected here. 

Factors bl = (al
2) OFK SFK 

Cond’l 

Simulation 

mean – 0.7 0 0 

l = 0 (nugget) 0.1 0.0 0.0 0.1 

l = 1 (short range) 0.45 0.15 0.2 0.39 

l = 2 (long range) 0.45 0.01 0.42 0.44 

Sum of all factors 1.0 0.97 0.99 1.0 

 

The unconditional and conditional simulations have interesting relationships with respect to different 
factors.  The unconditional simulation can be viewed as being to be updated through adopting conditioning 
data.  The contribution of conditioning information is more significant when simulating large scale 
factor(Factor 3 in this example) as shown in the third row in Figure 5.  Unconditional simulation of small 
scale factor(Factor 2 in this example) is not much influenced by conditioning data as shown in the second 
row in Figure 5.  Figure 6 represents the amounts of change in simulation values when adopting 
conditioning data and not.  X-X’ section was chosen for showing.  Bottom graph in Figure 6 illustrates 
conditioning data( ), unconditional simulation(solid line), and conditional simulation(dashed line) along 
with X-X’ line.  There is rare correlation between unconditional simulation and conditioning data points.  
After updating by the conditioning data, conditional simulation is likely to follow conditioning data points.  
We have observed large amount of updating after incorporating conditioning data for large scale feature.  
This phenomenon is not observed in small scale factor simulation.   

It is noted that conditional simulation(dashed line) does not reproduce the conditioning data at data location 
instead sum of conditional simulated factors reproduce conditioning data.      

Geostatistical Filtering 

Noisy synthetic seismic data is prepared.  Seismic amplitude map is generated over the channel type 
reservoir and amplitude signal is exaggerated to clearly show the effect of noise filtering.  One can see 
meandering channel in the seismic amplitude image.  Original seismic image with noise is shown in Figure 
7.  The modeled variogram is also shown in the first row in Figure 7.  Solid lines represent fitted variogram 
with experimental variogram shown as dashed line. As expected, the data has high nugget effect(≈50%).  
The seismic data has three nested structures, i.e. 50% nugget effect, 30% isotropic small structure and 20% 
anisotropic structure with N-S major continuation direction.  This example has no systematic noise such as 
repeated noise bands due to cyclic seismic survey design.  Salt-and-pepper type random noise is only 
shown.  Seismic amplitude is transformed into normal scores first.  Our goal is to mask the unwanted 
random noise and to enhance the meaningful structures.  Simple factorial kriging was applied to this 
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example.  Second and third row in Figure 7 show extracted factors corresponding to nugget, isotropic short 
range, and anisotropic long range.  Nugget effect is due to random noise so that we filtered out nugget 
factor and resulting filtered image is shown in the lower right in the same figure.  Random noise is largely 
removed with preserving small feature and large feature.   

Geostatistical filtering is basically depending on the number and types of fitted variogram.  This is one 
advantage of geostatistical filtering technique since geologic knowledge can be added when fitting the 
experimental variogram hence more realistic structure may be extracted.   

Data Integration 

Amoco.dat data is considered for data integration.  We have one primary porosity variable to be estimated 
and one exhaustively sampled seismic data.  Location of primary porosity is shown in upper left of Figure 8.  
Normal score seismic amplitude is shown in right of the figure.  Fitted variogram of porosity has three 
identified features, i.e. 10% nugget effect, 20% isotropic small scale and 70% anisotropic large scale 
features (major in N-S and minor in E-W).  

hmin=hmax 1000 hmin=6000
hmax=25000

( ) 0.1 0.2 ( ) 0.7 ( )Sph Sphγ == + +h h h  

Seismic data appears to be varied smoothly. Variogram of secondary data is fitted as having two features, 
35% isotropic small scale and 65% isotropic large scale features.   

hmin=hmax 2000 hmin=hmax=20000( ) 0.35 ( ) 0.65 ( )Sph Sphγ == +h h h  

First, simple factorial kriging with exhaustive seismic data was performed and two factors are extracted 
separately: isotropic small scaled feature and isotropic large scaled feature.  Extracted factors are shown in 
Figure 9.  To check the relationships between primary porosity and extracted factor, scatter plots are shown 
in the right column in Figure 9.  Correlation of primary, Z(uα) and total seismic variable, Y(uα) is 
summarized as ρZY and ρZY is 0.615.  It is noted that correlation coefficient is slightly changed when 
plotting extracted factor 1 and 2 with primary variable, 

1
0.488 0.615

l totalZY ZYρ ρ
=
= < =  

2
0.660 0.615

l totalZY ZYρ ρ
=
= > =  

where Yl=1 is an extracted small scale feature and Yl=2 is an extracted large scale feature from original 
seismic data noted as Ytotal.  We checked that large scale factor is more relevant feature to the primary 
variable.  This is reasonable result since the variogram of primary porosity has greater contribution of large 
scale feature (70% variability) than small scale feature (20% variability).  Besides, the variogram of seismic 
data shows 65% variability contribution of large scale feature.  Although the difference between 

1lZYρ
=

 and 

totalZYρ  or the difference between
2lZYρ

=
 and 

totalZYρ is not large, it is important to check that extracted 
relevant factor is more related to the primary variable to be estimated.  Figure 11 represents the integrated 
isotropic small scale feature and anisotropic large scale feature using factorial collocated co-kriging 
equation (7).  To identify isotropic small scale feature, primary variable and extracted isotropic small scale 
factor are co-kriged.  To identify anisotropic large scale factor, primary variable and extracted isotropic 
large scale factor are co-kriged.  All co-kriged estimates are shown in Figure 11. 

To see how much update after integration, small scale and large scale features extracted only from primary 
porosity are plotted in Figure 10.  Anisotropic long range structure is significant along with N-S direction.  
The variance of small scale factor is very low due to smoothness effect.  Co-kriged factor 1 and 2 has more 
variability as shown in Figure 11.  
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Conclusions 

An improved factorial kriging algorithm has been proposed to identify features.  Conventional factorial 
kriging method has been reviewed and tested on synthetic example, and they showed unrealistic estimation 
even though kriging equation and constraint are theoretically right.  An improved factorial kriging adopts 
simple kriging paradigm.  Unknown mean is assumed to be constant overall and simple factorial kriging 
was applied on the example data.  Features with different scale are identified well rather than using 
conventional factorial kriging.   

Factorial simulation with simple factorial kriging has been suggested to correct smoothness of kriging.  
Conditional factorial simulation worked based on combination of factorial kriging and unconditional 
factorial simulation.  Unconditional factorial simulation was updated significantly in large scale feature 
after assigning conditioning data.  Factorial simulation corrects the kriging smoothness. 

Other application of factorial kriging was to mask noise in exhaustive seismic data and to amplify the 
specific spatial features.  Synthetic seismic amplitude data was prepared with large random noise.  Simple 
factorial kriging successfully filtered out the unwanted random noise and enhanced the specific spatial 
factors.  Factorial kriging approach makes it possible to integrate more relevant feature with primary 
variable.  We have tested factorial collocated co-kriging using sparely sampled porosity and extracted 
relevant factor from seismic data.  After integrating, we have identified spatial features with different scales 
which are hidden in the primary variable.  
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Figure 1: Reference values and sample data for example. 

 

 
Figure 2: Ordinary kriging for example. 

 

 
Figure 3: Ordinary factorial estimates: mean, nugget, short scale and long scale features. 
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Figure 4: Simple factorial estimate.  Sum of estimated factors and constant mean is very close to simple 
kriging estimate(shown in the bottom). 
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Figure 5: Unconditional and conditional factorial simulation using simple factorial kriging.  Factor 1, 2, 
and 3 indicate nugget, short range and long range structures, respectively. 
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Figure 6: Unconditional and conditional simulation values in line X-X’.  The profile represents how much 
conditioning data affect the simulation with long range feature. 



 405-14 

N-S

E-W

hmax 18
hmin 18

hmax 80
hmin 20

( ) 0.5 0.3 ( )

                0.2 ( )

h Exp h

Sph h

γ =
=

=
=

= +

+

 
Figure 7: Geostatistical filtering applied to seismic exhaustive data.  The original seismic amplitude is 
generated.  Synthetic example contains large random noise that should be removed.  Simple factorial 
kriging is applied to filter out the noise and to extract specific features.   
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Figure 8: Primary and secondary variable map and their fitted variograms. 

 

 
Figure 9: Extracted factor from secondary data.  Right scatter plot shows the correlation between primary 
and extracted factor 1 and 2.  The last scatter plot is the plot between primary and secondary.  
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Figure 10: Extracted factor 1 and 2 from the primary variable.  Primary variable has two structures, 
isotropic small feature and anisotropic (major continuity in N-S) long range feature.  

 

 
Figure 11: Integrated maps. Collocated co-kriging is performed with primary and relevant factors extracted 
from secondary data.  Left figure is the integration map with primary and short range factor 1.  Right figure 
is the integration map with primary and long range anisotropic factor 2. 


