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Data integration requires the multivariate distribution between the considered data sources.  Probability 
combination schemes including permanence of ratios, the tau model, the nu model and the lamda model 
have received much attention recently.  This approach involves the combination of each calibrated 
probability conditioned to individual data source to approximate the joint probability, which is termed 
indirect estimation method.  The main challenge with these probability combination schemes is fair 
consideration of redundant data.  Directly estimating the joint probability between variables meets this 
challenge.  A procedure for integrating soft secondary data and training image (TI) is presented.  Previous 
studies have mainly focused on probability combination approaches in order to integrate secondary and TI.  
However, in this paper we suggested an idea of directly estimating multivariate probability conditioned to 
secondary data and TI simultaneously. 

Introduction 

Geostatistical data integration is an important subject in petroleum reservoir characterization.  It is desirable 
to reproduce all of data to model reservoir with less uncertainty and high accuracy.  The data available for 
geostatistical modeling can often be divided into (1) direct measurements of the primary variable being 
predicted, (2) secondary data such as seismic attributes, and (3) analogue or geologic information in the 
form of training images in geostatistics.  The resulting probability is a joint probability conditioned to the 
relevant data and it will be calculated at every visited node. 

Previous probabilistic data integration studies including permanence of ratios (PR model), tau model, nu 
model and lamda model involve two step approaches: each datum is individually calibrated, and they are 
combined to approximate the joint probability conditioned to all data sources.  Naïve combination function 
is PR model that used conditional independence assumption among the considered data.  This may lead to 
biased integration results since considered data has inevitably related with the primary variable of interest.  
Advanced models such as tau, nu and lamda model impose weights to each calibrated probability that 
might allow considering data inter-relation or redundancy, and allow weighting the more reliable datum.  
The main challenge with probability combination schemes is fair consideration of redundant data which is a 
critical step.  

In this paper, we propose a direct estimation technique to infer the joint probability rather than using 
probability combination approach which contains complicated redundancy weight calibration step.  Besides, 
there is no guarantee that indirectly approximated probability satisfies basic probability requirements such 
as marginalization property.  In the proposed method, the multivariate probability distribution is directly 
estimated, and they are updated constrained with the known marginal probabilities.  We applied the direct 
estimation method to integrate soft secondary data and training images. 

Probability Combination Approaches 

We introduce a probability combination method briefly and discuss drawbacks.  When combining soft 
secondary data and training image, previous studies have mainly focused on the use of probability 
combination approach.  Suppose we have well data (termed D1), training image (termed D2), and seismic 
data (termed D3).  Each datum is calibrated to provide conditional probability of facies k=1,…,K, for 
example k = 1 is “being shale” and k = 2 is “being sand”.  Correct joint probability of interest should be 
constructed conditioned to all data sources D1,D2,D3, such as p(k| D1,D2,D3,).  Probability combination 
method, however, approximates joint probability through combining each calibrated probability in the 
followings: 
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where C is a normalizing factor.  Because MPS technique accounts for well hard data and training image 
data source D1 and D2 were aggregated to give p(k|D1,D2).  p(k|D3) is resulted from seismic data calibration 
with primary variable.  Exponential terms λ1 and λ2 are interpreted as redundancy weights which should be 
varied based on how much redundant data are: higher redundant data get lower weight and lower redundant 
data get higher weight.  Various weighting schemes have been developed to find optimum data redundancy 
measures.  Data redundancy, however, is not simple function of linear relation between data but joint 
function of (D1,D2,D3).  Moreover, it is more difficult to quantify data redundancy between (well data + TI) 
and soft secondary data. 

Major challenge of indirect estimation through combination function is not only to find optimum weights, 
but also to satisfy basic probability requirement such as marginal conditions.  Approximated probability 
from eq. (1) must satisfy two known marginal conditions.  Paper-123 in CCG report 10 introduces 
drawbacks of PCS approach in sense of difficulty of redundancy quantification and marginal conditions. 

Integration of Multiple Secondary Data and TIs 

CCG paper-101 in this report demonstrates the direct multivariate density estimation to integrate multiple 
secondary data.  The method is to infer multivariate pdf under the known marginal pdf constraints.  After 
constructing multivariate pdf the conditional probability of interest is directly extracted from the pdf.  
Multiple secondary data is assumed to be numeric so that the joint modeling of (D1,…,Dm) is accessible, 
where (D1,…,Dm) represent generically m soft secondary data.  The multivariate pdf f(k,D1,…,Dm) was 
initialized and then it can be modified under two marginality constraints in the below, 
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since global information p(k) can be computed using hard primary data, and the joint distribution of m 
secondary data f(D1,…,Dm) is fairly accessible.  Above marginal constraints were implemented with 
iterative updating scheme in direct multivariate density estimation. 

Direct construction of multivariate pdf can be applicable to integrate secondary data and training image as 
well because: (1) we can infer MPS conditioned to training images and (2) we have already estimated 
multivariate pdf conditioned to secondary data.  Figure-1 shows the construction of multivariate pdf using a 
specific hard conditioning data configuration and training image.  Multivariate probability can be expressed 
such as in case of binary facies with two conditioning hard data,  

1 2 3(u ,u ',u ''),   , ', '' 1,...,p k k k k k k K= = = =    (2) 

where u1 is the simulation node, u2 and u3 are conditioning hard data location.  Multivariate space is 
characterized by K(N+1) probability points, where N is number of conditioning data (see the right 3D figure 
in Figure-1).  snesim is a noble algorithm to construct multivariate probability.  Our challenge is to 
integrate soft secondary data and training image, ultimately to build multivariate pdf conditioned to MPS 
and secondary data such that, 

1 2 3(u ,u ',u '', ),   , ', '' 1,...,p k k k Y y k k k K= = = = =    (3) 

Soft secondary data exists everywhere within reservoir area and collocated data is only used for inferring 
the multivariate probability eq. (3) at the visited node u1.  Figure-2 illustrates multivariate space jointly 
conditioned to multipoint data and collocated secondary data.  One dimensional axis is added to 
multivariate space shown in Figure-1 due to incorporating secondary variable.  Joint modeling of primary 
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and secondary variable, f(k,y), is established from the secondary data integration with direct multivariate 
density estimation (see CCG paper-101 in this volume).  Now, marginalization of the joint probability (3) 
provides the following relations: 
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The first relation (4) shows summing up of joint probability over possible outcomes of primary variable at 
conditioning data location u2 and u3 should amount to the joint probability f(k,Y=y).  The second relation (5) 
gives the summing up of joint probability over possible outcomes of secondary variable should amount to 
the multipoint statistics.  Joint probability eq. (3), thus, must be constructed under marginal relation (4) and 
(5).  Two marginality constraints specified above are implemented by alternating iterative process:  

 Step 1. Initialize joint probability (0)
1 2 3(u ,u ',u '', ),   , ', '',p k k k Y y k k k y= = = = ∀ ∀  

 Step 2. Update using the first marginality constraint eq. (4) 
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 Step 3. Update using the second marginality constraint eq. (5) 
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 Step 4. Set p(2) as p(0) and go to step 2 until there is no change in multivariate pdf. 

Initial guess p(0) in step 1 was initialized with independence assumption such as p(0)=p(u1=k,u2=k’,u3=k”) × 
f(k,Y=y).  Marginal conditions are honored in step 2 and 3.  The above procedure is applied at every visited 
simulation nodes to get multivariate pdf. 

Figure-3 shows the true reference image containing two faces: sand and mudstone colored by black and 
white, respectively.  72 well data is randomly sampled from the true image, and it was used as hard 
conditioning data.  Training image used for MPS is also shown most right in Figure-3.  Single secondary 
data was simulated over the entire nodes and calibrated with direct density estimation to provide facies 
probability maps as shown in the bottom of Figure-3.  72 samples were used for calibrating secondary data.  
To focus on the influence of secondary data integration, we generated very high correlated secondary data 
with ρsec,sand=0.82: a certain seismic attribute is quite useful to detect sand channel in deep water clastic 
reservoir.  Secondary data derived facies probability shows clear recognition of sand and mud facies.   

MPS simulation was performed with small number of conditioning hard (we limited maximum 
conditioning data as 3) data and given TI.  snesim algorithm was used for MPS simulation and two facies 
realizations are shown in the top of Figure-4.  MPS realizations do not show good reproduction of realistic 
heterogeneity compared with true image possibly due to small number of conditioning data and/or the 
selected TI.  The proposed direct density method was applied to integrate MPS with calibrated secondary 
probability.  Two facies realizations are shown in the bottom of Figure-4.  Integration of highly correlated 
secondary data produces better reproduction of channel pattern. 

Discussion and Future Work 

The main goal of this study is to assimilate secondary data and training image.  One way to integrate those 
data is for combining data derived probabilities in order to estimate the joint probability.  Probability 
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combination schemes, however, have a few disadvantages: they require a data redundancy weight 
estimation process, and there is no guarantee of satisfying marginal conditions.  In this paper, we proposed 
an idea of directly estimating multivariate distribution under the known marginal conditions.  The method 
was applied to combine secondary data and MPS.  The target joint probability is directly achieved through 
the alternating update process.  Facies realizations with integrating secondary and MPS represented better 
reproduction of real heterogeneity. 

The approach presented here gives good results, however, there are some aspects of the technique that need 
to be further explored and documented.  These are including:  (1) analysis of computational cost, (2) 
convergence problem of the iterative procedure, and (3) honoring hard data. 
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Figure 1:  Schematic illustration of building multivariate pdf conditioned to training image. 

 
Figure 2:  Schematic illustration of building multivariate pdf conditioned to MPS and secondary variable. 
 
 
 

 
 
Figure 3:  True image, 72 sample data extracted from true image and training image are shown in the top.  
Calibrated secondary data are shown in the below, p(facies|sec).   
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Figure 4:  Two facies realizations obtained from MPS simulation are shown in the upper, and facies 
realizations with the integration of secondary data and MPS are shown bottom. 


