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Application of Multivariate Density Estimation (MDE) to Facies 
Simulation with Transition Probability Matrices (TPM) 

Yupeng Li, Sahyun Hong and Clayton V. Deutsch 

In this study, the process of constructing a multivariate probability distribution from specified marginal 
distribution is addressed.  The univariate marginal and bivariate marginal distribution can be obtained 
from transition probability matrices built from vertical profiles of well data.  The 3D conditioning data 
configurations are transformed to vertical transition probability data configuration during the multivariate 
probability distribution estimation, which makes it possible to use the vertical transition probability to the 
3-D space. 
 
Introduction 
 
In geostatistics, it is very common to build the models of a categorical variable that represents facies or 
rock types.  Although sometimes, deterministical models based on professionals’ experiences are used in 
practice, the geostatistical simulation realizations are being used increasingly for uncertainty quantification. 
Stochastic modeling algorithms such as sequential indicator simulation (SIS) are widely used to construct 
these multiple realizations. 
 
Based on the sequential simulation algorithm, SIS is commonly used for categorical variables.  The 
classical SIS algorithm is fast and straightforward because the modeling of the conditional probability 
distribution at each unsampled location requires the solution of only a single (co)kriging system for each 
category.  Due to the complex features of geological variables, some non-linear geostatistics algorithms 
have been developed including multiple point geostatistics (Strebelle, 2002).  Both the traditional 
geostatistics (SIS) and multiple geostatistics are based on Bayes Law.  A multivariate joint probability is 
obtained (directly or indirectly) and the conditional probability for the unsampled location given the 
available data can be obtained using Bayes law.  Sequential simulation decomposes the multivariate joint 
probability by recursive application of Bayes law, while the multiple point statistics set up the multivariate 
joint probability by scanning a training image (Deutsch, 2002, Caers and Zhang, 2004). 
 
In this paper, a new multivariate probability distribution estimation scheme based on the facies transition 
probability matrix (TPM) is proposed. The TPM provides the bivariate and univariate marginal distribution 
for any combination of two categorical variables between any two locations at any lag distance. From this 
information, specific multivariate probability distributions that satisfy the bivariate and univariate 
constraints built from the n-conditioning data can be inferred. The estimation process is a kind of iteration 
based on the transition probability calculated directly from the conditioning data’s vertical profile and 
transformed to 3-D data configuration.  
 
The first section of this paper is an introduction on transition probability and the definition of TPM.  
Instead of using indicator variograms, transition probabilities are used as the tools to characterize the 
spatial relationships.  In the second section, the construction of a transition probability matrix is introduced.  
In the third section, the related mathematic relationships between the multivariate probabilities distribution 
and bivariate marginal distribution are illustrated.  Based on that, the multivariate probability distribution 
estimation (MDE) process is presented.  The MDE process presented in this section is a non-linear 
approach compared with kriging.  The fourth section explains the vertical-horizontal transform approach 
which facilitates 3-D estimation and simulation by this new approach.  The final section will present some 
preliminary results of MDE approach and future work on this new method. 
 
TPM definition 
 
In stochastic theory, the Markov chain is a sequence of random variables (X1, X2, ... ) with the Markov 
property, that is, given the present state, the future and past states are independent, which can be written as: 
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1 1 1 1 1 1( , ..., ) ( )n n n n n n n nP X k X k X k P X k X k+ + + += = = = = = . 

The possible values of 
tX form a countable set S (ܺ௧ א ݇௜; ݇௜ ൌ 1,… , ,ܭ ݅ ൑ ݉) called the state space of 

the chain, where
ik  denote mutually exclusive, exhaustively defined states of a stochastic process.  If a 

sequence of states has the Markov property, then every future state is conditionally independent of every 
prior state. The changes of states are called transitions.  The conditioning probability of a state given the 
previous state 1 1( )n n n nP X k X k+ += =  is called the transition probability.  The wholly description of the 

transition probability of a finite state space of S ( ,ik i m≤ ) going from state ݇௜ to state ௝݇  in n steps will 

form a ݉ ) matrix ݉כ )
, ( , )n

i jT x h n=  with the ith row and jth column element of , 0( )h n
i j n j it P X k X k= = = = . 

This matrix is called transition probability matrix (TPM). 
 
Assuming the lithological types at location 

tX  in the vertical profile of a well will only depend upon the 
lithological type at the preceding location

1tX −
, it is recognized as a Markov chain process.  Many efforts 

have been done on the use of Markov chain transition matrix in geology and geostatistics.  Most often, the 
Markov chain transition matrix is used in the vertical profile explanation, sedimentary evolution analysis 
and stratigraphic sequences simulation.  Krumbein has tried molded a transgressive-regressive strand-line 
deposits  using a time-discrete transition matrix to control the lateral shifting(Krumbein, 1968). It is also 
have been used in soil science to describe the spatial order of different soil cases and vertical spatial change 
of textural((Li, 1997).  Carle and Fogg tried to integrate transition probabilities into the frame of indicator 
geostatistics for litho-facies simulation (Carle and Fogg, 1996; Carle and Fogg, 1997; Weissmann and 
Fogg, 1999;Carle, 2000). Elfeki used a kind of coupled markov chain to character the heterogeneity as a 
non-Gaussian field by multi-dimensional transition probabilities (Elfeki and Dekking, 2001; Elfeki, 2006).  
 
TPM construction 
 
Mainly, the vertical profile is structured as discrete-state Markov chains in two ways.  In one way, 
observations are spaced equally along a vertical profile to yield transition probability matrices.  The 
transitions of the equally spaced rock types at discrete points are counted.  Because the same rock type may 
be observed at successive points, the transition matrix that gives the probability of going from one rock 
type to another generally has nonzero elements on the main diagonal.  The second approach considers only 
the succession of certain rock types, and because each transition is to a different rock type within the 
system, the diagonal elements are all zero. In this approach the whole successful thickness of a same rock 
type, which is one state of Markov chain may recognized from log curve or form outcrop.  It is also called 
an embedded Markov chain.  
 
In this study, the first approach is used to build the TPM.  Suppose the whole vertical profile is H which 
divided into n equal segments using an equal segment.  The state space in this Markov chain is the facies 
category set ( 1, 2 , .., )i ik k K= .  Then, in each segment will define a state of a Markov chain and the 
transition probability of the whole profile will form a TPM.  
 
For example, the total observed number of state k୧ followed the state k୨ giving the observation interval h=n 
is denoted as ܒ,ܑܖ  while ܑܖ  is the counted total number of iK .  When the interval is 1, the transition 
probability from state iK to state jK will be:  

t୧,୨୦ୀଵ ൌ ݊௜,௝ ݊௜⁄  
 

The probability of a transition from K1 to K1, K2, K3,...K is given by 1
1 ,
h

jt = (j=1,2,…,m ) in the first row and 

so on and denoted as: 
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Generally, from the account approach, the elements of the TPM (∀ h ) will be: 
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∑
∑

 

Where:      , ( , )i jt x h is the transition probability of state iK  to state jK  

                 ,i jn is the number of state iK  followed by jK after h steps; 

                                               in   is the row sum of the ,i jn  , ,i i j
j

n n=∑ ; 

      ,
,

i j
i j

n∑  is the whole sum of the tally matrix entries; 

                  , ( , )i jp x h is the joint probability of two state   K ;i jK and  

                    ( , )ip x h is the univariate marginal probability of state  iK   
 
The TPM has to fulfill specific properties: 
(1) Its elements are non-negative, ,0 1i jt≤ ≤ ;  

(2) The elements of each row sum up to one, 
,

1
( , ) 1

m

i j
j

t x h
=

=∑ ; 

Generally,  

,

{  exit at (x+h) AND K  exit at x} 
( , ) { exit at (x+h)  exit at x}

(  exit at x)
j i

i j j i
i

p K
t x h p K K

p K
= =  

When the process is stationary or homogenous, the transition probability is independent of position x, the 
transition probability , ( )i jt h and the bivariate joint probability ( ; , )i jp k kh will depend only on the 
intervals vectors.  It shows that the bivariate joint probability: 

( ; , ), ; , ; , 1,...,i j i jp k k k k i j K∀ =h h  

can be calculated from the transition probability , ( , )i jt x h  as: 

,( , , ) { exit at (x+h) AND exit at x}= ( )* ( )i j i j i j ip h k k p k k t h p h=  
The bivariate probability matrix for a particular lag h can be also fully defined by its relatively transition 
probabilities matrix.  The sum of all Kଶbivariate joint probabilities should be 1. A strong assumption of 
symmetry would entail that ( , , ) ( , , )i j j ip h k k p h k k= .  
 
TPM curves 
 
For a stationary process, the transition probability will depend on the lag between different observation 
positions.  The transition probability t୧,୨ሺh୧ሻ will form a diagram as the 

ih increasing from zero to a further 
distance. For t୧,୨ሺh୧ሻ (i=j), that means the states changed to themselves and we can call it direct-transition; if 
it is t୧,୨ሺh୧ሻ(i≠ j), it is called cross-transition which reflects the cross-correlations or inter-states relationship 
between different states.  For example there are 3 rock types in a research well profile. The transition 
probability matrices curves of rock type 1 changed to rock type 1, 2, and 3 is shown in Figure 1. 
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Figure 1 transition probability matrices curves.  Red: direct-transition of rock type 1 to 1; Green: cross-
transition of rock type 1 to 2; Blue: cross-transition of rock type 1 to 3 
 
As the calculation distance increases, the transition probability of rock type 1 changing to itself is 
decreasing, with that of changing to rock type 2 and 3 increasing. The same curve can be calculated for the 
others which compose the whole transition probability matrix curves as shown in figure 2.  
 

 
Figure 2 transition probability matrices curves 

 
From the plots in Figure 2, given any known rock type and distance interval for two locations, the transition 
probability can be calculated.  These curves reveal some geological and geostatistical information : (1) as 
the distance increase, the transition curve will become flat as reach their sill, The TPM will reflect the 
global univariate probability which can be identified as the percentage of this rock type within the whole 
section.  (2) The TPM will also reflect the relatively bivariate distribution for a particular lag h, in this 
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bivariate distribution the univariate probability at this particular lag h are also imbedded.  (3) The transition 
probability matrices curves also reflect the spatial juxtaposition information. In Figure 1, during the 
procedure of rock type 1 decreasing and reached its sill, the other 2 rock types begin to increase and 
reached their sill with variable probabilities.  The rock type 2 has a higher probability to exist than rock 
type 3 as facies 1 decrease.  
 
Multivariate probability distribution Estimation (MDE) Based on TPM  
 
One of the important problems in geostatistics is finding a proper means to describe spatial dependence. 
Bivariate probability matrices inferred from TPM can be used as an alternative of variogram to characterize 
the spatial dependence.  Using this full matrix of ܭଶ bivariate joint probability in multivariate probability 
distribution estimation is the purpose of this research.  Inference from well data leads to a complete 
specification of the bivariate joint probability matrices for all distance and direction vectors in the vertical 
profile: 

( ; , ), ; , 1, ...,i jp k k i j K∀ =h h  

Where:  ( ; , )i jp k kh is the bivariate joint probability of rock type ik  and jk ; 

                                      ik and jk  are two rock type in two different location; 

                                       h is the observed interval between two different locations. 

After the bivariate joint probabilities are inferred, the main concern is the construction of a multivariate 
joint distribution given these sets of bivariate joint probabilities.  Consider the following schematic 
situation, where the data-data vectors and data-unsampled vectors are all expressed in bivariate joint 
probability.  Of course, the data could be distributed in 3-D space. 

 
Figure 3 schematic horizontal transition probability data configuration 

Assume there are n locations ( 1  ... nu u ), each of the n location has K categories.  The n  random 
variables will form a multivariate probability distribution function (pdf)  1 2( , ,..., )MV nP u u u which is defined 

as below and represents the probability of a specific configuration of categories ( 1,..., )ik i K=  existing at 

locations 1 2, ,..., nu u u . 

1 2 1 1 2 2( , ,..., ) ( , ,..., ); 1,2,..,MV n n n iP u u u prob u k u k u k k K= ∈ ∈ ∈ =  

In this distribution, there are totally nK  possible values. Each of these values occurs with a given 
frequency which is identified with an index mvI that is: 

1

1
1 ( 1)*

N
n

mv n
n

I u K −

=

= + −∑  
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Where: 1, 2,..., ;n
mvI K= nu  is the code of the ܐܜܖ location of the data configuration that identifies its 

categories; K is the total number of the categories. 

After obtaining this multivariate probability distribution, it is straightforward to calculate the conditioning 
probability using the Bayes law as below:  

0 1 2( , ,....., )np u u u u = 0 1

1

( , ,.., )
( ,.., )

MV n

MV n

p u u u
p u u

= 0

0
, 1

( , )
  

( , )
i j

MV j j
K

MV i j j
k k

P u u k

P u k u k
=

=

= =∑
 

jwhere: u = 0 1, , ..., ;nu u u  
, 1,..., ; , 1,...,i jk k K i j n= =  

The denominator will be the sum of several indices that specified by the conditioning data category values; 
the nominator is the specific category’s multivariate probability.  Our challenge is to estimate this 
multivariate distribution 1( , ..., )MV np u u based on the full set of bivariate joint distribution.  

 
Constraints of the multivariate distribution 
As stated previously, from the transition probability matrices, we can get the bivariate joint probability

( ; ', '')aimp k kh  of any two facies 'k  and ''k .  While if the multivariate probability distribution is known, 
the bivariate joint probability can be calculated as: 

1 2

1 2 1 2

1 ', ''
1 1 ' '' 1

( , , ', '') ... ... ... ( ,..., )
j j n

K K K

cal j j MV n k k
k k k k k k k

p u u k k P u u P
= = = = =

= =∑∑ ∑ ∑ ∑
 

Where: , ', '' 1,2,.... ;  1,...ik k k K i n= =

 1 2 1 2, 1,..... ;   ;j j n j j= ≠  

The bivariate joint probability 1 2( , , ', '')cal j jp u u k k  calculated from the multivariate probability 

distribution should be equal those obtained from the transition probability matrix ( ; ', '')aimp k kh .  This will 
impose (ܖ כ ሺܖ െ ૚ሻ כ  .૛) constraints on the multivariate probability distributionܓ

 

The order relationship of the multivariate distribution will compose another constraint to this multivariate 
probability distribution. 

1 1
1

( ,..., ) 1 ,..., 1,...,
nK

MV n n
i

p u u u u K
=

= =∑
 

Based on those two constraints, an iteration approach is adopted to modify an initial multivariate 
probability distribution to satisfy those two constraints.  The steps are: 
 
Step 1: The initial value of the multivariate probability values come from assumption that the facies at each 
locations are independent. Under the independent assuming, the multivariate distribution constrained only 
to the univariate probabilities could be written as follows: 

1 1 1
1

( ,..., ) ,..., 1,...,
j

n

MV n n k n
j

p k k p k k K
=

= = = =∏u u  

Step 2: The initial distributions are modified by the constrained of transition probability which expressed as 
a bivariate joint probability between every two locations. After modified by bivariate joint probability, a 
new multivariate probability distribution is: 



  103-7 

*
0 0 1 1( , ,..., )MV n np k k k= = =u u u  

Step 3:  Go to the bivariate joint probability constraints using *
MVp  as the new initial value for the 

distribution until there are no notable changes in the conditioning probability calculated from the 
multivariate probability distribution.  

The iteration modifying process is shown in figure 4.  

 
Figure 4 the modifying process of MDE  

 
Transformation of TPM to any Spatial Direction 
 
Usually, in the vertical profile of the well data or outcrop, the data have a higher density which can build 
the transition probability matrices more easily.  While for estimation and simulation, the grid needs to be 
simulated in a 3D space. 
 
Geological research have clear seen that sedimentary facies show vertical sequence superposition and the 
vertical progression of facies will reflect lateral facies changes.  Sedimentary environments that started out 
side-by-side will end up overlapping one another over time due to transgressions and regressions.  The 
result is a vertical sequence of facies mirrors the original lateral distribution of sedimentary environments 

Initial multivariate probability based on the 
independent assumption and univariate 
marginal proportion:

1
j

n

mv k
j

P p
=

=∏

Calculate the bivariate joint probability from the initial multivariate 
probability:

1 2

1 2 1 2

1 ', ''
1 1 ' '' 1

( , , ', '') ... ... ... ( ,..., )
j j n

K K K

cal j j MV n k k
k k k k k k k

p u u k k P u u P
= = = = =

= =∑∑ ∑ ∑ ∑

Calculate the modify factors for the multivariate probability from the 
calculated and aiming bivariate joint probability: ( ; ', '')

( ; ', '')
aim

biv
cal

p k kF
p k k

=
h
h

Modify the multivariate probability and calculate the bivariate joint probability 
from the new  

Is there  a mismatch between the 
calculated and aiming bivariate joint 

probability ?Yes

Stop and output the modified multivariate probability

No

*
mvP
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Figure 8 the test data location map, variogram models and transition probability matrices for the test case 

The research grid is 10 by 10 grid nodes (100 totals). Based on that information, the estimation and 
simulation are done. The estimation results including IK and MDE results are shown in Figure 9. 

Figure 9 IK and MDE estimation results 
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For simulation, three kinds of simulation algorithm are used. One is the traditional sisim.  While for the 
blocksis, the results are cleaned with a light clean option. The last one is simulation with MDE. The results 
are shown in Figure 10. 

Figure 10 SIS realizations with different algorithm 
 
Conclusions and Future Work 
 
The MDE based on TPM and the horizontal-vertical transition probabilities transformation approach will 
provide a new path for categorical variable estimation and simulation.  No kriging is involved and yet a 
completely consistent multivariate distribution is predicted for each unsampled location constrained to all 
available information.  In this approach, the bivariate joint probabilities are used directly; there are no such 
order relation deviation problems as occurs in traditional indicator kriging.  The bivariate joint probability 
is easy to integrate with univariate probability information, which will provide a platform to account for 
secondary data inferred from the available site-specific observation.  This could also be generalized in 
future research.  Because the multivariate probability has a large dimension, and only bivariate joint 
probabilities constraints are used in each iteration, the iteration convergence speed may be slow and CPU 
intensive.  Future research will address the speed of the algorithm. 
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