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Generalized Linear Distributions to Account for Parameter Uncertainty 
in Sequential Gaussian Simulation 

 
S. H. Derakhshan and C. V. Deutsch 

 
Geological sites are heterogeneous and uncertain.  Multiple realizations are an important aspect of 
uncertainty; however, parameter uncertainty, that is, uncertainty in the histogram is even more important 
for uncertainty in resources and reserves.  Accounting for parameter uncertainty in geostatistical 
simulation is a longstanding problem. Targeting specific quantiles such as P10, P50 and P90 realizations 
is a related challenge. This paper presents a solution to these problems.  A methodology is presented to 
simulate realizations of continuous variables with specified position in the range of global uncertainty. The 
key to the methodology is the use of the generalized linear distribution in place of the uniform distribution 
for simulation.  The theoretical validity of this method is established, implementation details are discussed 
and examples are presented.  This has a wide range of applicability in modern geostatistical reservoir 
modeling where global uncertainty is an important goal. 

 
Introduction 
Creating P10, P50 and P90 geostatistical reservoir models is an important task for flow simulation, risk 
analysis, reservoir forecasting and management.  A base case model is always required.  The 80% 
probability interval is common in the earth sciences.  Higher probability intervals are often so large that 
they are difficult to use in risk qualified decision making. 

There are some statistical methods to establish P10 and P90 reserve figures.  The conventional approaches 
to estimate the reserves are divided into deterministic and probabilistic methods.  The deterministic 
approach consists of volumetric, material balance and decline curve analysis and they use a single value for 
each parameter for estimating the reserves, there are no P10, P50 and P90 values in this method.  The 
probabilistic approach uses a full range of values for each parameter in the reserve calculation.  For 
example, the volumetric method could use a distribution of values for porosity, initial water saturation, 
formation volume factor and so on to get a range of values for the reserve.    For the purpose of reserve 
estimation, National Instrument 51-101 (NI 51-101) defines P10, P50 and P90 (Robinson et al, 2004). P90 
refers to proved reserves, P50 refers to proved and probable reserves and finally P10 refers to proved, 
probable and possible reserves.  Based on NI 51-101 definition, P90 is less than P50, and P50 is less than 
P10.  In this paper, P10 refers to a p-value of 0.9 and P90 refers to a p-value of 0.1 (the p-values in this 
paper are defined base on the statistical definition of cumulative distribution function).  The problem with 
conventional statistical methods is that there are no specific realizations.  It is not possible to run a flow 
simulator and assess the dynamic performance of the models under different conditions.  It is highly 
desirable to have specific realizations that approximately represent the 80% probability interval. 

 
The traditional geostatistical approach to finding P10 and P90 models is based on ranking procedures. 
Multiple realizations (often 100) are generated, and then some quick-to-calculate static reservoir attribute 
such as connected pore volume is chosen to rank the realizations.  Realizations with specific position in the 
distribution of the static response are selected.  The biggest weakness of this approach is that parameter 
uncertainty is often ignored.  Parameter uncertainty is probably the most important of global uncertainty. 
 
Parameter uncertainty can be calculated with a variety of techniques including the spatial bootstrap and the 
conditional finite domain (CFD) method (Babak et al, 2007-1, 2007-2).  The challenge is to transfer this 
uncertainty into the geostatistical realizations.  One approach would be to use different reference 
distributions; however, this is not fully implemented in most software and conditioning causes the resulting 
distribution to be close to the data distribution in any case. 
 
In practice, multiple realizations are created without accounting for parameter uncertainty.  These 
realizations can be ranked; however, they are all very similar because major differences due to parameter 
uncertainty are ignored.  This is a significant problem when the reservoir is large relative to the variogram 
range.  Fluctuations above the mean average out with fluctuations below the mean and all realizations are 
very similar. 
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A general concern with any realization that is claimed to be a specific P value (e.g., P10, P50 or P90) is that 
it is not the same P value at all locations.  A P10 realization may have P90 values at some locations, P50 at 
others and so on.  The P value of a realization must be considered as a global parameter with little local 
meaning. 
 
The technique proposed here is a modification to the popular Sequential Gaussian Simulation (SGS) 
algorithm.  SGS draws realizations from a multivariate Gaussian distribution based on recursively 
decomposing the multivariate distribution by Bayes Law.  The conditional distributions at each step in SGS 
are based on the normal equations (also known as simple kriging).  Realizations are drawn from the 
conditional distributions by Monte Carlo simulation from a uniform distribution of probability.  The 
simulated values are assigned to grid nodes and used to condition subsequent simulated values.  The use of 
the uniform distribution leads to realizations from the multivariate Gaussian distribution that reproduces the 
target global mean and variance. 
 
The central ideal proposed in this paper is to use a non-uniform distribution for the Monte Carlo simulation, 
see Figure 1.  Uniform probabilities lead to a P50 realization.  A 10% high realization would be generated 
by using random numbers preferentially from values nearer to 1 (the red dashed curve).  A 10% low 
realization would use random number preferentially from values nearer to 0 (the green long-dashed curve). 

 

 
Figure 1: Non-uniform versus uniform distribution used for the Monte Carlo simulation; uniform 
distribution (black solid line) allows having a moderate combination of low and high values, the red dashed 
curve should be used to have a model with preferentially high values, the green long-dashed curve should 
be used to have a model with preferentially low values 

 
This seems like an ad-hoc engineering approach with no statistical basis; however, this paper demonstrates 
the theoretical validity of this approach.  The slope is analytically linked to the mean of the resulting 
distribution regardless of the distribution shape.  This new family of linear distributions is referred to as a 
generalized linear distribution (GLD).  This new linear family of distribution allows us to specify and 
achieve a target global mean with a known probability.  There is no cumbersome pre- or post-processing.  
The only things that are needed to characterize the linear distribution are the original distribution of the 
data, the standard deviation of the global mean (which can be calculated by using bootstrap, spatial 
bootstrap, etc) and the p-value which we are interested in. 

Standard Generalized Linear Distribution 
The Generalized Liner Distribution (GLD) is a three-parameter (a, b, η) family of continuous probability 
distributions. a and b are the minimum and maximum values (these two parameters can be any value) and η 
is the slope or shape parameter (which should be between -1 and 1). The distribution can be abbreviated as 
L(a, b, η). The standard GLD happens when a and b are 0 and 1 respectively. The probability density 
function (PDF), the cumulative distribution function (CDF) and the quantile function of the GLD are 
summarized below. If η = 0 the standard GLD returns to uniform distribution, U(0,1). 
 
PDF: 
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Figure 2 shows the CDF and PDF of GLD. The characteristics of generalized linear distribution are 
discussed in the Appendix. 
 

 
Figure 2: PDF (left) and CDF (right) of GLD for 3 different cases ( 1,0,1η = − ) 

Distribution of the global mean  
To target the desired global mean with any probability which follows the Gaussian distribution using 
standard GLD we need to calibrate η for any p-value that we are interested in. Assume that m is the global 
mean; ym is the global mean which follows the Gaussian distribution with mean of m and the standard 
deviation of σm. σm can be calculated by using bootstrap, spatial bootstrap, etc. It is also equal to σ/√N, 
where σ is the global standard deviation and N is the number of independent data. 

Relationship between ym, η and p 
To derive the relationship between η and p, we need the quantile function of standard GLD, q(p) , and the 
original CDF of the data, F(y) . By using below equalities the relationship between ym , η and p can be 
derived: 
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Where I can be calculated as: 
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Where f(y) and F(y) are the global PDF and CDF of the data. 
Since ym follows the Gaussian distribution with mean of m and standard deviation of σm therefore the 

below relationship is true: 

( )1
m my m G pσ −= + ⋅ ……………….…………………………………………...........................................(6) 

Where G-1(p) is the inverse of the standard normal cumulative distribution function. Inserting above 
relation in equation (4) yields to: 
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The value of σm/I ensures that η to be in the range of -1 to 1. Therefore we have a range for p-value of 
interest. Since σm is relatively small number (because of the narrow Gaussian distribution that we have for 
global mean) therefore p value approximately covers the whole range of 0 to 1. 
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Where G(p) is the standard normal cumulative distribution function.  Equation (7) shows that η follows the 
Gaussian distribution with mean of zero and the standard deviation of σm/I.  When the original distribution 
does not follow any specific parametric distribution, a good approximation of the original CDF would be: 
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Where the sum of the weights is equal to one and Δ(y− y(i)) is the CDF of the Dirac distribution: 
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y(i) is the ith original data in the ascending order. Using Dirac distribution the equation for I would be: 
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In the case of equal weights wti = wtj = 1/n : 
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Where n is the number of original data. The weights could be calculated from any Declustering techniques. 
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Conclusion 
 
Using generalized linear distribution (GLD) instead of uniform distribution in sequential Gaussian 
simulation has been presented.  It allows us to simulate directly the P10, P50 and P90 or any interested 
ranked reservoir models based on the global distribution of the variable of interest.  The idea is to calibrate 
the η parameter (slope parameter of GLD) which is only function of the p-value of interest and data. The 
analytical formula for η is derived.  It only needs simple calculation for determining σm and I.  We showed 
that η parameter has Gaussian distribution with mean of zero and standard deviation σm/I.  The value of σm/I 
ensures that η to be in the range of -1 to 1.  The final reservoir model has the global mean the same as the 
quantile value corresponding to the interested p-value from Gaussian distribution of global mean (Central 
Limit Theorem).  This method honors the global uncertainty very well, increases the space of uncertainty 
(for each interested p-value we can create different number of realizations). This method shows that the 
traditional sequential Gaussian simulation just generate different realizations for the p-value of 0.5 (the p-
value of 0.5 corresponds to the global mean of the Data because of Gaussianity).  
 
The histogram and variogram reproduction are also checked. In the case of different p-values the range of 
variability of reproduced variogram and histogram is a function of distribution and range of variability of η 
parameter. In the case of variogram reproduction, high p-values will cause decreasing the variogram range 
in minor direction and increasing the variogram range in major direction.  
 
Instead of using standard GLD other family of parametric distributions which gives values between 0 and 1 
could be used too (e.g. beta distribution, etc). These families of parametric distribution have more than one 
parameter to be characterized and finding the relationship for them is not straightforward because of the 
complexity of mathematical formulas for these types of distributions. The usefulness of GLD is because of 
having one parameter (η) and simple closed form formulas for PDF, CDF and quantile function. The 
simplicity and linear behavior of standard GLD is useful in order to target the desired global mean with a 
certain percentile. 
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Appendix: Generalized Linear Distribution 
 
The Generalized Liner Distribution (GLD) is a three-parameter ( , ,a b η ) family of continuous probability 
distributions. a and b are the minimum and maximum values (these two parameters can be any value) and  
η  is the slope or shape parameter (which should be between -1 and 1). The distribution can be abbreviated 
as ( ), ,L a b η . The characterization of GLD is summarized as below: 
 
Probability density function (PDF): 
 
The PDF of the generalized linear distribution is: 
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Cumulative distribution function (CDF): 
 
The CDF of the generalized linear distribution is: 
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The CDF has a quadratic feature since its PDF is linear. This feature allows calculating the quantile 
function easily. 
 
Quantile function: 
 
From definition of quantile function we have: 
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By using the CDF, the quantile function is calculated: 
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Some of the important percentiles ( 0η ≠ ): 
 

• Median (50th percentile): 
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• Lower Quartile (25th percentile): 
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• Upper Quartile (75th percentile): 
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• Interquartile Range: 
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Moments: 
 

• Mean (Expected value, 1st non-centered moment): 
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• 2nd non-centered moment: 
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• Variance (2nd centered moment): 
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• Non-centered moment of order k: 
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• Centered moment of order k: 
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We know that 
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Moment Generating Function: 
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η

η

η

η η η η η

⎧ ⎡ ⎤− ⎛ ⎞ − = −⎪ ⎢ ⎥⎜ ⎟−⎝ ⎠− ⎣ ⎦⎪
⎪

− =⎪
⎪ ⎡ ⎤= ⎛ ⎞⎨ − =⎢ ⎥⎜ ⎟⎪ −⎝ ⎠− ⎣ ⎦⎪
⎪ ⎡ ⎤+ + − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞⎪ − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎪ − − − −⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥ −⎣ ⎦⎩

 

 
Special cases: 
 

• Uniform distribution between a, b; U(a,b) 
 
For U(a,b) the parameter η is equal to zero (zero slope): 

( ) ( )
1

; , ,0
0

for a x b
b af x a b

otherwise

⎧ ≤ ≤⎪ −= ⎨
⎪
⎩

 

 
• Standard generalized linear distribution: 

 
In this case, the parameters a and b are equal to zero and one respectively, therefore the PDF, CDF 
and quantile function can be summarized as below: 
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( )
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2

2

2 1 0 1
;0,1,

0

0

;0,1, 1
1

1 4 1
;0,1,

2

x for x
f x

otherwise

for x a

F x x x for a x b
for x b

p
q p

η η
η

η η η

η η η
η

η

⎧ + − ≤ ≤⎪= ⎨
⎪⎩

<⎧
⎪

= + − ≤ ≤⎨
⎪ >⎩

− + + −
=

 

 


