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Testing for the Multivariate Gaussian Distribution of 
Spatially Correlated Data 

Olena Babak and Clayton V. Deutsch 

 
Most geostatistical simulation is based on an assumption that the variable is multivariate Gaussian after a 
univariate normal scores transform.  It is interesting to test how far the data depart from the multivariate 
Gaussian distribution; the decision of stationarity could be reconsidered or a different multivariate 
distribution considered.  Tests for multivariate Gaussianity, however, require data independence, which is 
rarely the case in geostatistical modeling.  Different techniques are reviewed and a new testing 
methodology is developed.  This test identifies the correct number of failures in a multivariate Gaussian 
setting and provides a measure of how far real data depart from being multivariate Gaussian. 
 
Introduction 
 
Geostatistical simulation is a useful tool for modeling variables that cannot be described deterministically 
due to their inherent complexity.  The most common simulation approach is Gaussian simulation.  Each 
variable is transformed to a Gaussian distribution.  This ensures a univariate Gaussian distribution of each 
variable; then, an assumption of multivariate Gaussian distribution is made.  Real multivariate distributions 
are not likely multivariate Gaussian and show such non-Gaussian features as non-linearity and 
heteroscedasticity.  In this case, Gaussian simulation may not reproduce important aspects of the spatial 
variability of the phenomenon under study.  This could result in biased predictions.  Therefore, a procedure 
for testing how far the data depart from a multivariate Gaussian distribution is of great practical interest. 
 
A number of tests for departures from the multivariate Gaussian distribution in a spatial data context are 
reviewed.  The theory behind each test is developed and practical implementation is discussed.  A test is 
proposed that is based on a univariate test after data orthogonalization.  This test is shown to be fair, that is, 
the number of falsely rejected tests matches perfectly the confidence level of the test.  The performance of 
the tests is illustrated using real petroleum reservoir data. 
 
Testing for a Multivariate Gaussian Distribution 
 
Consider n data values )(,),(),( 21 nYYY uuu … at locations 

nuuu ,,, 21 …  that have been normal score 
transformed.  We would like to test the assumption of a multivariate Gaussian distribution between these 
data.  Specifically, we would like to determine if an n by 1 vector of data T

nYYYY )]()()([ 21 uuu …= , 
where ,,,1),( niY i …=u  are normal scores, is n-variate Gaussian with mean of zero and n by n variance-

covariance matrix C  is given below 
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Under the assumption of stationarity the variance-covariance matrix C  is calculated through the normal 
score transformed data variogram model )(hγ and can be rewritten as follows 
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where ),( jiC uu  is the stationary covariance between njiji ,,1,, …=uu  (Goovaerts, 1997).  Now let 
us note that  

),,(~)]()()([ 21 C0uuu NYYYY T
n…=  

if and only if 
),,(~)]()()([~

21
1 I0uuuL NYYYY T

n…−=  

where T
nYYYY )](~)(~)(~[~

21 uuu …= ; I denotes the identity matrix of size n by n; 1−L  stands for inverse 
of the lower triangular matrix L in the Cholesky decomposition (Golub and Van Loan, 1996) of the 
variance-covariance matrix C, that is, TLLC = . 
 
Thus, to test if  

),,(~)]()()([ 21 C0uuu NYYYY T
n…=  

we need to test if variables corresponding to different elements in Y~  are (1) standard normally distributed 
and (2) independent (Lehmann, 1999). 
 
Unfortunately, it is impossible to test if each of the elements in vector Y~  is standard normal because we 
have only one multivariate observation (spatially correlated sample).  We can, however, test if there is 
strong departure from the multivariate Gaussian distribution.  Specifically, if  

),,(~)]()()([ 21 C0uuu NYYYY T
n…=  

then vector T
nYYYY )](~)(~)(~[~

21 uuu …=  is univariate standard normally distributed.  This follows 

directly from the fact that if ),,(~)]()()([ 21 C0uuu NYYYY T
n…=  then each element in Y~  is standard 

normally distributed. 
 
Therefore, to test if the data departs strongly from the multivariate Gaussian we can apply Komogorov-
Smirnov test (Berry and Lindgren, 1990) to test if T

nYYYY )](~)(~)(~[~
21 uuu …=  is univariate standard 

normal.  If the transformed data Y~  fails the Komogorov-Smirnov test, then we conclude that our data is 
strongly non multivariate Gaussian (level I departure from a multivariate Gaussian distribution).  However, 
if the null hypothesis of the standard normality of the Y~  is not rejected, then we cannot conclude that the 
data is multivariate Gaussian.  It only means that there is no strong departure from the multivariate 
Gaussian distribution at the particular level of significance.  In particular, if our data fail to reject the 
univariate test for multivariate Gaussianity, we can devise a test for a bivariate Gaussian distribution.  We 
know that if  

),,(~)]()()([ 21 C0uuu NYYYY T
n…=  

then matrix  
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is bivariate standard normal.  A test for a bivariate Gaussian distribution amounts to a Komogorov-Smirnov 
test if MY  is bivariate standard normal.  Then if the data fails this test, then it is not multivariate Gaussian 
normally distributed (level II departure from a multivariate Gaussian distribution); however if the null 
hypothesis is not rejected it does not mean mean that our data is multivariate Gaussian, it only means that 
additional testing is required.  Higher order tests can be designed in similar fashion. 
 
Depending on the size of the spatially correlated data set at hand, multivariate tests of different orders can 
be conducted to identify evident departures from a multivariate Gaussian distribution.  In general, however, 
because real spatial data are not multivariate Gaussian in nature, conducting a univariate test for a 
multivariate Gaussian distribution is likely sufficient.  A logical conclusion from the statement that “real 
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data are not multivariate Gaussian” is that testing for a multivariate Gaussian distribution is aimless.  
However, test results are interesting because they provide a measure of how far the data depart from a 
multivariate Gaussian assumption.  This measure could be used to identify problematic data.  Data that 
depart a great deal from an assumption of multivariate Gaussian distribution could be investigated further.  
There may be problem data, there may be trends or other non-stationary features, and there may be other 
techniques better suited to the data at hand.  This application will be further developed in Section 5. 
 
Univariate Test of a Multivariate Gaussian Distribution (UTMG) 
 
The test proposed above requires knowledge of the stationary variogram model )(hγ ; however, the true 
underlying variogram is not known.  To account for the fact that the variogram/covariance of the normal 
score transformed data is unknown, the following modification is considered.  Instead of testing if  

T
nYYYY )]()()([~

21
1 uuuL …−= is standard normal 

we will test 
T

nYYYY )]()()([ˆ~
21

1 uuuL …−=  is normally distributed 
where 1ˆ−L  stands for inverse of the lower triangular matrix L̂  in the Cholesky decomposition of the 
variance-covariance matrix Ĉ  obtained based on modeled experimental variogram.  No restriction is made 
on the mean and variance of the normal distribution. The Lilliefors test is (Lilliefors, 1967) used rather than 
the conventional Kolmogorov-Smirnov test because it accounts for the fact that the underlying statistical 
parameters are not known. 
 
The recommended test in this paper will be denoted UTMG for a Univariate Test for a Multivariate 
Gaussian distribution.  The test accounts for spatial correlation and the fact that the variogram is 
unknown.  In summary, (1) normal score transform the data, (2) calculate and fit a variogram, (3) 
orthogonalize the data according to the covariance matrix, and (4) perform the Lilliefors test on the result. 
 
A number of small studies are documented to show that the proposed corrections are necessary.  Consider 
500 samples of 500 data spaced a unit distance apart from a multivariate Gaussian distribution to with 
spatial correlation.  The following isotropic spherical variograms were used: 
 

);()( 501 hh == aSphγ  

);()( 2002 hh == aSphγ  

);(2.0)(55.025.0)( 20103 hhh == ++= aa SphSphγ  

).(2.0)(55.025.0)( 100504 hhh == ++= aa SphSphγ  
 
Because the data are already multivariate Gaussian, no normal score transformation was done.  Tests were 
conducted at four different levels of significance α , 05.0,1.0,2.0=α  and 0.01.  The number of 
Komogorov-Smirnov tests that rejected the null hypothesis for each value of α  was recorded.  The same 
procedure based on Komogorov-Smirnov tests but with variance-covariance matrix C calculated using 
modeled experimental variograms was also calculated for comparison.  Note that experimental variogram 
for each of 500 sampled was calculated and modeled separately based on gamv from GSLIB (Deutsch and 
Journel, 1998) using two spherical variogram structures.  Results of the test for each cases are given in 
Tables 1-4 for all four different variogram models.  Tables 1-4 also show respective results of the corrected 
UTMG (correction is made for the unknown covariance).  The results of the corrected univariate test of 
multivariate Gaussian distribution shown in Tables 1-4 were obtained using Lilliefors test of normality 
(Lilliefors, 1967) conducted using modeled experimental variograms.  
 
Note that in the case of a known variogram model, the Komogorov-Smirnov test results are very close to 
that predicted by theory; however, when the variogram model is unknown, then results of Komogorov-
Smirnov test are usually very different from the theoretical expectation.  Results of the Lilliefors test, on 
the other hand, are very close to the theoretical expectation for the unknown variogram model.  The results 
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of the Komorov-Smirnov test and Lilliefors test were similar when modeled experimental variogram were 
close to true variogram models used in simulation, see Tables 3 and 7. 
 
Tables 5-8 show results of the simulation study for 500 samples of 200 data each. The same variogram 
models as before were used in simulation. The conclusions of the analysis of Tables 5-8 are the same.  
 
 
Table 1: Number of rejected tests for 500 samples of size 500 data each from multivariate Gaussian 
distribution. Results were obtained based on )(1 hγ . 

Confidence 
level 

Theoretical Komogorov-Smirnov 
test with known 

)(hγ  

Komogorov-Smirnov 
test with unknown 

)(hγ  

Lilliefors test  
(with unknown )(hγ ) 

80% 100 111 317 106 
90% 50 66 252 58 
95% 25 33 211 30 
99% 5 3 121 3 

 
 
Table 2: Number of rejected tests for 500 samples of size 500 data each from multivariate Gaussian 
distribution. Results were obtained based on )(2 hγ . 

Confidence 
level 

Theoretical Komogorov-Smirnov 
test with known 

)(hγ  

Komogorov-Smirnov 
test with unknown 

)(hγ  

Lilliefors test  
(with unknown )(hγ ) 

80% 100 112 415 102 
90% 50 47 380 55 
95% 25 20 345 27 
99% 5 3 288 1 

 
 
Table 3: Number of rejected tests for 500 samples of size 500 data each from multivariate Gaussian 
distribution. Results were obtained based on )(3 hγ . 
Confidence 

level 
Theoretical Komogorov-Smirnov 

test with known 
)(hγ  

Komogorov-Smirnov 
test with unknown 

)(hγ  

Lilliefors test  
(with unknown )(hγ ) 

80% 100 108 77 117 
90% 50 49 41 65 
95% 25 23 23 40 
99% 5 4 3 7 

 
 
Table 4: Number of rejected tests for 500 samples of size 500 data each from multivariate Gaussian 
distribution. Results were obtained based on )(4 hγ . 

Confidence 
level 

Theoretical Komogorov-Smirnov 
test with known 

)(hγ  

Komogorov-Smirnov 
test with unknown 

)(hγ  

Lilliefors test  
(with unknown )(hγ ) 

80% 100 101 170 114 
90% 50 54 105 62 
95% 25 30 65 29 
99% 5 7 27 3 
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Table 5: Number of rejected tests for 500 samples of size 200 data each from multivariate Gaussian 
distribution. Results were obtained based on )(1 hγ . 

Confidence 
level 

Theoretical Komogorov-Smirnov 
test with known 

)(hγ  

Komogorov-Smirnov 
test with unknown 

)(hγ  

Lilliefors test  
(with unknown )(hγ ) 

80% 100 106 287 111 
90% 50 54 226 65 
95% 25 31 167 29 
99% 5 4 104 4 

 
Table 6: Number of rejected tests for 500 samples of size 200 data each from multivariate Gaussian 
distribution. Results were obtained based on )(2 hγ . 

Confidence 
level 

Theoretical Komogorov-Smirnov 
test with known 

)(hγ  

Komogorov-Smirnov 
test with unknown 

)(hγ  

Lilliefors test  
(with unknown )(hγ ) 

80% 100 102 415 101 
90% 50 55 380 57 
95% 25 29 344 21 
99% 5 7 288 1 

 
Table 7: Number of rejected tests for 500 samples of size 200 data each from multivariate Gaussian 
distribution. Results were obtained based on )(3 hγ . 

Confidence 
level 

Theoretical Komogorov-Smirnov 
test with known 

)(hγ  

Komogorov-Smirnov 
test with unknown 

)(hγ  

Lilliefors test  
(with unknown )(hγ ) 

80% 100 116 91 103 
90% 50 55 52 63 
95% 25 30 27 26 
99% 5 7 8 2 

 
Table 8: Number of rejected tests for 500 samples of size 200 data each from multivariate Gaussian 
distribution. Results were obtained based on )(4 hγ . 

Confidence 
level 

Theoretical Komogorov-Smirnov 
test with known 

)(hγ  

Komogorov-Smirnov 
test with unknown 

)(hγ  

Lilliefors test  
(with unknown )(hγ ) 

80% 100 86 204 79 
90% 50 47 141 45 
95% 25 25 101 25 
99% 5 3 57 2 

 
 
The Multivariate Aspect of the UTMG 
 
The data being tested are univariate Gaussian by design (Deutsch, 2002).  The univariate test of a 
multivariate Gaussian distribution (UTMG) truly tests the multivariate distribution.  Consider a small 
example to illustrate this fact. 
 
A string of 613 data is available for analysis.  The data in the string are equally sampled with a distance of 
0.1 meters between the samples.  The histogram of the data is shown in Figure 1.  The univariate 
distribution of the data is non-Gaussian.  Figure 1 also shows the histogram of the normal score 
transformed data; the distribution of the normal score transformed data is perfectly Gaussian (p-value of the 
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Komogorov-Smirnov test is 1).  The variogram of the normal score transformed data is shown in Figure 2.  
The modeled experimental variogram is given below: 

).(2.0)(55.025.0)( 201 hhh == ++= aa SphSphγ  

Figure 2 also shows the variogram of the Y~  data obtained by removing the spatial structure from the 
normal score transformed data.  It can be clearly seen from Figure 2 that observations Y~  are independent; 
the variogram model of Y~  is pure nugget.  Figure 3 shows the histogram of Y~ .  It is clear from Figure 3 
that these modified values are not univariate Gaussian.  The Lilliefors statistic for testing univariate 
normality at significance level 01.0=α  is 0.1028 (critical value is 0.0446), p-value is <<0.0001.  Thus, 
the data are strongly not multivariate Gaussian; however, the univariate distribution of the normal score 
transformed data is perfectly Gaussian. 
 
Software Implementation 
 
A program called testing_MG was specifically prepared to test strong departures from multivariate 
Gaussianity using UTMG. The software implementation of this program is consistent with all the 
FORTRAN programs of GSLIB group (Deutsch and Journel, 1998). The parameter file for program 
testing_MG is presented below: 
 

 
 

A run of the program testing_MG creates an output directly in the output window with the following 
information: reject or do not reject the null hypothesis; critical value of the Lilliefors test and Lilliefors 
statistic. Note that the data inputted to the program testing_MG must be normal score transformed.  
 
 
Selecting Data with the UTMG 
 
The UTMG has one very interesting application.  This application allows us to measure how real data 
depart from a multivariate Gaussian distribution.  We do not expect any of the data (even after normal score 
transformation) to be multivariate Gaussian; however, the UTMG can rank data according to the Lilliefors 
statistic.  The data with lowest value of the Lilliefors statistic can be thought of most closely resembling the 
multivariate Gaussian distribution.  Consider a small case study. 
 
Five strings of 900 data each are available for analysis.  The data in the strings are equally sampled with 
distance of 0.1 meters between the samples.  The histograms of the data are shown in Figure 4.  Looking at 
Figure 4 we can note that all data sets exhibit different non-Gaussian features, therefore normal score 
transformation is employed to make each data set univariate Gaussian.  The experimental variograms and 
their fits for the five normal score transformed data sets are shown in Figure 5.  
 
In order to rank the data with respect to departure from a multivariate Gaussian distribution, the Lilliefors 
test of normality for T

nYYYY )]()()([ˆ~
21

1 uuuL …−=  will be employed for each normal score 
transformed data set.  Table 9 shows results of the Lilliefors test for all five normal score transformed data 
sets.  
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Table 9: Result of Lilliefors test for all 5 data sets considered in the case study. 
 Lilliefors 

statistic 
Rank Critical Value  

at 2.0=α  
Decision Critical Value 

at 1.0=α  
Decision Critical Value  

at 01.0=α  
Decision 

1 0.1466 2 0.0245 Reject 0H  0.0268 Reject 0H  0.0368 Reject 0H  
2 0.1974 4 0.0245 Reject 0H  0.0268 Reject 0H  0.0368 Reject 0H  
3 0.2227 5 0.0245 Reject 0H  0.0268 Reject 0H  0.0368 Reject 0H  
4 0.1185 1 0.0245 Reject 0H  0.0268 Reject 0H  0.0368 Reject 0H  
5 0.1928 3 0.0245 Reject 0H  0.0268 Reject 0H  0.0368 Reject 0H  

 
Note that all five data sets are univariate Gaussian after normal score transformation; however, none of 
them are multivariate Gaussian.  They all depart strongly from a multivariate Gaussian distribution.  This 
result holds true for any commonly accepted level of significance .α   Note also that each of the five data 
sets has a different value of the Lilliefors statistic.  The data sets can be ranked with respect to the value of 
the Lilliefors statistic.  Data with the smallest value of the Lilliefors test statistic will receive rank 1 and is 
considered to be closest to the multivariate Gaussian among all data sets.  In the particular case considered 
above data set 4 is the closest data set to being multivariate Gaussian, while data set 3 is the furthest away 
from being multivariate Gaussian. 
 
Subsets of different sizes were considered to see if the test would preserve the rank order departure from a 
multivariate Gaussian distribution.  Table 10 shows results for the average Lilliefors test statistic calculated 
based on 500 data sets of sizes 899 data points, 500 data points and 200 data points from the five data sets.  
To calculate the Lilliefors test statistic each of the selected data sets was normal score transformed 
independently of other data.  The variogram models for the selected data sets were not recalculated.  This 
was done mainly to avoid artifacts that could be observed in automatic fitting of the variograms.  Figure 6 
shows the variogram models obtained for 900 normal score data (all data) of data set 3 and to normal score 
transformed 899 first data in data sets 3.  Note that despite the fact that experimental variograms are 
virtually identical, there is a clear mismatch in the variogram fits produced by automatic fitting program 
varfit. The difference is especially significant at short lag distances that has the most impact on the 
testing procedure. 
 
Table 10: Result of Lilliefors test for all 5 data sets considered in the case study. 

  
Lilliefors 
statistic 

 
 

Rank 

Average 
Lilliefors 

statistic for 
500 data sets 
of 899 data 

Rank 
based on 
average 

Lilliefors 
statistic 

Average 
Lilliefors 

statistic for 
500 data sets 
of 500 data 

Rank 
based on 
average 

Lilliefors 
statistic 

Average 
Lilliefors 

statistic for 
500 data sets 
of 200 data 

Rank 
based on 
average 

Lilliefors 
statistic 

Data 1 0.1466 2 0.1496 2 0.1078 2 0.0784 2 
Data 2 0.1974 4 0.1948 4 0.1621 4 0.1178 4 
Data 3 0.2227 5 0.2205 5 0.2016 5 0.1415 5 
Data 4 0.1185 1 0.1161 1 0.1032 1 0.0736 1 
Data 5 0.1928 3 0.1925 3 0.1322 3 0.1031 3 

 
The preservation of the rank position in Table 10 allows us to conclude that the univariate test of a 
multivariate Gaussian distribution is robust. 
 
Figure 7 shows the histograms of the values of Lilliefors test statistic for 500 data sets of size 500 data 
points obtained for each of the five data sets.  Looking at Figure 7 we can note that values of Lilliefors test 
statistic change from data set to data set selected from the same data.  The critical value of the Lilliefors test 
for data sets of size 500 at significance level 01.0=α  is 0.4930.  None of the data sets are 500-variate 
Gaussian even at such low level of significance.  Note, however, that as size of the data sets decreases to 
200, we can observe that some of the chosen data sets do not continue to exhibit strong departures from 
multivariate Gaussianity.  In particular, majority of data sets selected from data set 1 (50.2%) and great 
majority of data sets from data 4 (65%) can be considered 200-variate Gaussian at significance level 
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01.0=α  (critical value of Lilliefors test for data sets of size 200 at 01.0=α  is 0.0780).  Note also that 
none of the data sets from data 3 and only 4% of data sets from data 2 and 8.6% of data sets at significance 
level 01.0=α  can be considered as not exhibiting strong non multi-Gaussian features.  
 
Further, to investigate if the ranks calculated based on Lilliefors test statistic are preserved for data selected 
with the same configuration from 5 different data sets another small analysis was performed.  For each of 
500 data sets of size 500 we calculated how many times of the 500 data sets selected from data 1 was rank 
as number 1, 2, 3, 4 and 5.  The same was done for 500 data sets selected from data 2, data 3, data 4 and 
data 5. Results of this analysis are given in Table 11. 
 
It is apparent from Table 11 that the rank of Lilliefors test statistic is preserved for majority of data sets 
selected from each of the 5 data sets considered in a case study.  Moreover, looking at the results presented 
in Table 11, we confirm that the univariate test of a multivariate Gaussian distribution is robust and 
therefore applicable for ranking multiple datasets with respect to departures from a multivariate Gaussian 
distribution. 
 
Table 11: Results for ranking of 500 data sets of 500 data each selected for each of the 5 data sets 
considered in the case study. 
 Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 
Data 1 174 294 32 0 0 
Data 2 0 0 10 490 0 
Data 3 0 0 0 0 500 
Data 4 319 162 19 0 0 
Data 5 7 44 439 10 0 
 
Conclusions 
 
The longstanding problem of testing for a multivariate Gaussian distribution of spatially correlated data is 
considered.  A number of simple tests for testing strong departures from multi-Gaussian distribution have 
been developed.  The proposed UTMG test is fair; the number of falsely rejected tests matches perfectly the 
confidence level of the test.  Performance of the tests was illustrated using real petroleum data.  An 
interesting new approach for ranking data according to closeness to a multivariate Gaussian distribution 
was proposed.  This approach uses the Lilliefors statistic as a measure of departure from a multivariate 
Gaussian distribution was shown to be very robust in a case study. 
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Figure 1: Histogram of the 613 data in original units (left) and normal score units (right).  
 

 
 

 
Figure 2: The experimental variogram of the normal score transformed 613 data (dark dots) and its 
variogram model (line). Experimental variogram of the Y~  data obtained by removing the spatial structure 
from the normal score transformed data are shown in light dots.  

 
 

 
Figure 3: Histogram of Y~ .  
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Figure 4: Histograms of the five data sets of 900 data each used in a case study.  
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Figure 5: The experimental and model variograms for the five normal score data sets.  

 
Figure 6: Variogram models fitted by varfit to 900 normal score data (all data) of data set 3 (left) and to 
normal score transformed 899 first data in data sets 3 (right).  
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Figure 7: Histograms of the values of Lilliefors test statistic for 500 data sets of size 500 data points 
obtained for each of the five data sets considered in a case study. 


