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Simulation of Multiple Variables with Combined SGS/LU for 
Correlation Matrix Reproduction 

Olena Babak, David F. Machuca-Mory and Clayton V. Deutsch 

 
Multivariate simulation is a longstanding problem in geostatistics.  Fitting a model of coregionalization to 
many variables is intractable; however, the matrix of collocated correlation coefficients is often well 
informed.  Performing a matrix simulation with LU decomposition of the correlation matrix at each step of 
sequential simulation is implemented in some software.  The target correlation matrix is not reproduced 
because of conditioning to local data.  A correction procedure is developed to calculate a modified 
correlation matrix that leads to reproduction of the target correlation matrix.  The theoretical and 
practical aspects of this correction are developed. 
 
Introduction 
 
When dealing with several attributes in spatial modeling it is desirable to reproduce the collocated 
correlation among them.  Reproduction of the correlation between multiple variables can be achieved by 
using a variants of cokriging (Deutsch, 2002; Wackernagel, 2003).  Sequential Gaussian Simulation (SGS) 
can be extended to simultaneous modeling of several random variables.  Consider modeling N variables. 
 
Sequential Gaussian Simulation with Simple Cokriging can be applied to multivariate simulation (Journel 
and Huijbregts, 1978; Chiles and Delfiner, 1999).  A significant problem with using a full model of 
coregionalizaiton is fitting the N(N+1)/2 direct and cross variograms; this becomes intractable with more 
than four variables.  Another possibility would be to apply Sequential Simulation with either Collocated 
Cokriging (Xu, et al., 1992; Almeida and Journel, 1994) or Intrinsic Collocated Cokriging (Babak and 
Deutsch, 2008).  These algorithms, however, are designed for a single secondary variable. 
 
Multivariate sequential Gaussian simulation with correlated residuals (Davis, 1987) is another option; it is 
based on independent modeling of each random variable.  The data related to each variable is used to 
calculate the mean and variance of the local conditional distribution for that variable using simple kriging; 
no inference of the joint model for spatial continuity is needed.  Then, the drawing from the N conditional 
distributions is performed with correlation.  This has many desirable features including reproduction of the 
target mean and variance as well as target variogram models by simulated realizations.  Although the 
correlation matrix between the random variables is used for the residuals, it is not reproduced by the final 
simulated values.  The influence of conditioning causes the lack of conditioning. 
 
A novel approach for finding the “correct” correlation matrix for residuals is developed.  The correct or 
modified correlation matrix leads to reproduction of the correct correlation matrix between the variables of 
interest.  The proposed correction scheme is applied in several examples where significant improvement in 
the reproduction of correlation matrices over conventional method is shown. 
 
Recall of SGS with Correlated Residuals 
 
SGS with correlated residuals proceeds in normal scores or Gaussian units.  Locations are visited in a 
random order to avoid artifacts.  At each location, simple kriging is performed to find the mean )(, uiSKm  

and variance )(2
, uiSKσ  of the local conditional distributions for all N variables. a vector of correlated 

standard normal residuals ,)](,),([)( 1
T

N
T RR uuuR …=  such that 

 target( ( ), ( )) ( ( ), ( )) , , 1,..., ,i k j k i k j k ijρ R R Cov R R ρ i j N k= = ∀ = ∀u u u u  (1) 

where targetρ  is the target global correlation matrix between random variables.  Note that the residuals 
T

N
T RR )](,),([)( 1 uuuR …=  are drawn independently from location to location, that is, 

;,,...,1,,0))(),(())(),(( lkNjiRRCovRRρ ljkiljki ≠∀=∀== uuuu  (2) 
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The vector of simulated values T
N

T ZZ )](,),([)( 1 uuuZ …=  for each of the N random variables at the 
unsampled location u as 
 ( ) ( ) ( ) ( )SK SK= +Z u m u σ u R u  (3) 

where T
NSKSK

T
SK mm )](,),([)( ,1, uuum …=  is the vector of Simple Kriging means; matrix )(uσ SK  is 

given by 
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where values on the diagonal are equal to the square root of the Simple Kriging variances )(2
, uiSKσ  

obtained for N variables.  The simulated values are added as data for the simulation of subsequent nodes.  
Multiple equally-probable realizations can be created by changing the random number seed.  The shape of 
the conditional distributions is Gaussian ensuring that the simulated realizations for all variables will be 
standard normal.  The variogram reproduction is ensured by using not original data and previously 
simulated nodes. 
 
Problem of Sequential Gaussian Simulation with Correlated Residuals 
 
An unfortunate feature of multivariate SGS with correlated residuals is that the target correlation matrix 
between multiple random variables is not reproduced.  Thus, results may have a systematic bias.  To show 
this, let us calculate the correlation-covariance between two simulated values for variables iZ  and jZ , 

respectively, at arbitrary location u in the study domain, }.,,1{, Nji …∈   These simulated values 

)(uiZ  and )(ujZ  in sequential Gaussian simulation are given by 
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thus, due to independence between residual vector T
ji RR )]()([ uu and vector of Simple Kriging means 

T
jSKiSK mm )]()([ ,, uu , 
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Therefore, the global correlation between variables iZ  and jZ  is equal to  

.)()())(),(())(),(( target
,,,, ijjSKiSKjSKiSKji ρmmCovZZ uuuuuu σσρ +=   (7) 

Since the Simple Kriging mean values, )(, uiSKm  and )(, uiSKm  at any location of the study domain u are 
calculated based on the conditioning data and previously simulated nodes, the covariance between variables 

iZ  and jZ  at any location u within study domain is a linear function of the correlation coefficient target
ijρ .  

Thus, we can rewrite Equation (7) for the global correlation between random variables iZ  and jZ  as 
follows: 

,))(),(( target
ijijijji baZZ ρρ +=uu                                             (8) 
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where ija  and ,ijb  Nji ,...,1, =  are constants calculated based on the Simple Kriging weights (and 
variances).  Thus, we see that the only instance in which the target correlation-covariance matrix of the 
random variables to be simulated, ,targetρ  is reproduced, that is, 

,,,1,,))(),(( target njiZZ ijji …== ρρ uu                                 (9) 
is when  

.,,1,,1,0 njiba ijij …===                                           (10) 
Obviously, this event is highly unlikely. Thus, a correction to the multivariate Sequential Gaussian 
Simulation approach with correlated residuals must be made to reproduce the target correlation between 
variables iZ  and jZ at lag 0. 
 
Correction to the Multivariate Sequential Gaussian with Correlated Residuals 
 
Let us assume that residuals T

N
T RR )](,),([)( 1 uuuR …=  in multivariate sequential Gaussian simulation 

have the following structure.  The residuals T
N

T RR )](,),([)( 1 uuuR …=  are, as before, independent from 
location to location, that is, 

;,,...,1,,0))(),(())(),(( lkNjiRRCovRRρ ljkiljki ≠∀=∀== uuuu  (11) 
but correlated at the same location with some correlation-covariance matrix ,ρ  that is, 

.,,...,1,,))(),(())(),(( kNjiρRRCovRRρ ijkjkikjki ∀=∀== uuuu  (12) 
Then the global correlation matrix for residuals, ρ , to be used in multivariate Sequential Gaussian 
simulation to reproduce the target correlation-covariance matrix of the random variables to be simulated, 

targetρ  following the same procedure as before. In particular, it can be shown that if 

ijkjki ρRRCov =))(),(( uu , then the global correlation between random variables iZ  and jZ  is equal 
to 

,target
ijijijij baρ ρ+=                                                  (13) 

where ija  and ,ijb  Nji ,...,1, =  are constants calculated based on the Simple Kriging weights (and 
variances).  Note that if the multivariate Sequential Gausssian Simulation is unconditional, then constant 

ija  in equation (13) is equal to 0 and  

.target
ijijij b ρρ =                                                    (14) 

In order for the multivariate Sequential Gaussian Simulation to honor the correlation matrix between 
random variables at lag 0, targetρ , it is required, at each step of the simulation, to generate residuals with 
the following correlation structure: 
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The constants ija  and ijb , required for the calculation of the correlation matrix , that will be used in 

multivariate SGS to reproduce the target correlation matrix targetρ , can be found as follows. 

1. Independent ( Njiij ,,1,0 …=≠=ρ ) multivariate SGS realizations are generated to find the 

coefficients ija ’s as a correlation between realizations of the variables iZ , jZ , Nji ,...,1, = .  Due 
to ergodic fluctuations, we expect only a minor change in the resultant correlation coefficients between 
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different random variable realizations. Therefore the value of each constant ,,...,1)(, Njiaij =≠  is 
taken as the average coefficient of correlation between realizations for variables iZ  and jZ . 

2. Perfectly dependent ( NirRi ,,1,)( …==u ) multivariate SGS realizations are generated in order to 

find the ijb  values as the average difference between the correlation of random variables iZ  and jZ  

obtained in fully dependent simulation and the constants ija  from (1), Nji ,...,1)( =≠ . 

This approach is theoretically valid; however, the target correlation targetρ  may not be positive definite.  
This arises due to the fact that the coefficients of correlation for some pairs of variables are required to be 
significantly increased (due to ijb  being small).  Therefore, if the matrix (15) is not positive definite, a 
positive definiteness correction to this matrix must be applied before it can be used in multivariate SGS.  
 
Software Implementation 
 
A program sgsim_lu_matrix was prepared based on program usgsim of GSLIB group (Deutsch and 
Journel, 1998) to calculate the matrix of correlations between residuals that reproduces the correlation 
between variables at lag 0. The parameter file for program sgsim_lu_matrix is presented below: 
 

 
 
A run of the program sgsim_lu_matrix creates an output file with five columns. First two columns give 
the a’s and b’s coefficients from (13); third column repeats the values of the target correlations between 
variables; column 4 presents the correlations between residuals calculated using Equation (15); column (5) 
presents a column of final correlations between residuals to be used in multivariate simulation, these 
coefficients are corrected to make the matrix of residual correlations positive-definite (if no correction is 
required, then result in column 5 is the same as in column 4). Because the correlation matrices and matrices 
of a’s and b’s coefficients are symmetric, the values in each column of the output file inform only on the 
upper triangular part of each matrix. Thus, if n variables are simulated, then the output file would contain 

2
)1( +nn  correlation values in each column.  
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Unconditional Multivariate Example 1 
 
Consider the two standard normal random variables 1Z  and 2Z  with the following variograms 
characterizing their spatial continuity: 
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)(9.0)(1.0)(
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,                              (16) 

The coefficient of correlation between the two random variables is assumed to be 0.5.  
 
Our goal is to apply multivariate Sequential Gaussian Simulation to generate 100 realizations of the two 
random variables using their respective variogram models, that is, )(

1
hZγ  and ),(

2
hZγ  so that the 

correlation at lag 0 between 1Z  and 2Z is 0.5.  As a first step we must find the coefficient of correlation 

12ρ  to be used in multivariate SGS to reproduce the target correlation target
12ρ  of 0.5.  For such purpose a 

set of fully dependent and fully independent multivariate SGS realizations must be generated first to find 
coefficients 12b  and 12a  in (15).  Note that because the simulation is unconditional, the coefficient 12a  
should be equal to 0 within acceptable ergodic fluctuation. 
 
Figure 1 shows the histograms of the coefficients 12b  and 12a  obtained in 100 fully dependent and fully 
independent, respectively, multivariate SGS realizations.  It can be clearly seen from Figure 1 that 
coefficient 12a  is virtually zero (-0.006), as expected. While the value of coefficient 12b  is 0.746. This 

implies that a correlation coefficient between residuals for generation of 1Z  and 2Z  is given by 

670.0
746.0

5.0

12

target
12

12 ===
b
ρρ     (17) 

needs to be applied in the multivariate SGS in order to reproduce the target correlation of 0.5.  Figure 2 
shows the distribution of the correlation coefficients between the two random variables under study 
obtained by multivariate Sequential Gaussian Simulation with residual’s correlation coefficient equal to 
0.670.  Figure 2 also shows the distribution of the correlation coefficients between realizations for 1Z  and 

2Z  obtained by multivariate SGS with residual’s correlation coefficient equal to 0.5 (target correlation); 
which is the conventional approach. 
 
From Figure 2 we can clearly see that the corrected correlation works perfectly for this example; the target 
correlation is nicely reproduced.  The same cannot be said for the conventional approach.  Multivariate 
SGS in this case results in a correlation of 0.367 25% below the target) when the conventional approach is 
used. 
 
Figure 3 shows the variogram reproduction for 1Z  and 2Z  obtained in multivariate Sequential Gaussian 
Simulation with correlation coefficient between residuals fixed at 0.670.  As expected, both variograms are 
reproduced within ergodic fluctuation. Correlation between residuals has no impact whatsoever on the 
variogram structure.  This is because residuals are independent from location to location. The proof of 
variogram/covariance reproduction in multivariate sequential simulation that reproduces correlation at lag 0 
is a straightforward extension of the proof for variogram/covariance reproduction in the univariate SGS 
(Goovaerts, 1997). 
 
It is also worth noting that the average largest achievable correlation in multivariate SGS between two 
random variables 1Z  and 2Z  with spatial continuity characterized by )(

1
hZγ  and )(

2
hZγ  given by (11) 

is 0.746 (see Figure 1). Note that the correlation coefficient of 0.746 results in an unfeasible Linear Model 
of Correlation. So, in a sense, the multivariate correlated SGS approach can allow an increased flexibility.  
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Unconditional Multivariate Example 2 
 
Let us now consider five standard normal random variables ,5,,1, …=iZi with the following 
variograms characterizing their spatial continuity 
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The correlation matrix between these variables is given below 

 
Now let us consider multivariate SGS for generation of the random variables that honor the correlation 
matrix between variables at lag 0. We split our example into 2 parts: 

1. multivariate SGS for the variables ;3,2,1, =iZi  

2. multivariate SGS for all five variables, ;5,,1, …=iZi  
and compare results of the conventional multivariate SGS with corrected multivariate SGS proposed in this 
thesis. 
 
To find the coefficients of correlation 12ρ , 13ρ  and 23ρ to be used in multivariate SGS to reproduce the 
target correlations of 0.7, -0.2 and -0.5, respectively, fully dependent and fully independent multivariate 
SGS realizations are generated first.  These realizations are used to obtain the coefficients 12b , 13b , 23b , 

12a , 13a  and 23a  in (15).  Because the simulation is unconditional, the coefficients 

,3,,1)(, …=≠ jiaij  should be equal to 0 within acceptable ergodic fluctuation. 
 
Figure 4 shows the distributions of coefficients ijb  and ,3,,1)(, …=≠ jiaij  obtained by 100 fully 
dependent and fully independent, respectively, multivariate SGS realizations.  From Figure 4 we see that 
the coefficients ija ’s are, as expected, virtually zero; the coefficients ijb ’s are given below 

.835.0;476.0;857.0 231312 === bbb    (19) 
This implies that the following correlation coefficients  

;817.0
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7.0
12 ==ρ  
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13 −=

−
=ρ                (20) 
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.599.0
835.0

5.0
23 −=

−
=ρ  

need to be applied in the multivariate SGS in order to reproduce the target correlations of 0.7, -0.2 and -0.5, 
respectively, between random variables 21,ZZ  and 3Z . 
 
Figure 5 shows the distribution of the correlation coefficients 12ρ , 13ρ  and 23ρ  obtained by newly 
proposed multivariate SGS.  For comparison, Figure 5 also shows the distribution of the correlation 
coefficients that would be obtained by conventional approach.  From Figure 5 one can clearly note that the 
approach proposed in this paper results in almost perfect reproduction of the target correlations.  The 
largest absolute mismatch in the correlation coefficients is 0.004.  The same cannot be said about the 
conventional approach.  The largest absolute mismatch in the correlation coefficients in the conventional 
approach is more than 0.1, which is quite significant. 
 
Figure 6 shows the variogram reproduction for all three variables obtained in the multivariate SGS with 
corrected correlation matrix.  All variograms are aceptably reproduced within ergodic fluctuation.  The 
same procedure as before is applied to find the coefficients ,5,,1)(,, …=≠ jiba ijij  in (15).  The 

following is a summary of the results for the 
ijYb ’s coefficients (simulation is unconditional => ija ’s  

coefficients are zero) 
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This implies that the following correlation coefficients: 
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Note that the corrected correlation coefficients corresponding to correlation between first three random 
variables are exactly the same as before. This observation once again confirms the linear relationship in the 
correlation and independence of the solutions for the correlation coefficients.  The combined matrix of the 
correlation coefficients, however, is not positive semi-definite.  The smallest eigenvalue of the corrected 
correlation matrix is -0.0434.  Thus, a correction must be applied. There are two possible choices for the 
correction: 

1. Standardize the off-diagonal elements in the correlation matrix by (1 – smallest eigenvalue).   
In our case the off-diagonal elements should be standardized by 1.0434.  This is a minor 
correction. 

2. Correct only rows and columns corresponding to the variables making the correlation matrix 
negative definite. This correction may be feasible if these variables were less important than 
other.  In our case correlation matrix calculated based on the first four random variables was 
positive definite, after adding fifth variable it became negative definite.  To make it positive 
definite we need to multiply the correlations of the firth variable with all others by 0.84. In 
our example we consider all the variables equally important; thus, we will not consider this 
type of correction in our work. 

 
The following matrix shows the input correlation matrix to the multivariate SGS (the correlation matrix 
was made positive definite via correction option 1) 
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ρ   (23) 

 
Figure 7 shows the correlation matrix between variables reproduced by the newly proposed multivariate 
SGS.  For comparison, Figure 7 also shows the reproduced correlation matrix in the conventional approach.  
The mismatch in the results for correlation obtained by the two approaches to multivariate SGS are shown 
in Figure 8.  Note that the maximum absolute mismatch in the correlations obtained using multivariate 
sequential simulation that reproduces correlation at lag zero is 0.028, while in the conventional approach it 
is 0.107.  The slight increase in the mismatch in the reproduction of the target correlation coefficients 
obtained via the new approach is connected to the correction of the input correlation matrix to make it 
positive definite. 
 
Example of Conditional Multivariate SGS 
 
Let us consider the following small example.  Figure 9 shows the locations of 20 primary data in the study 
domain of size 100 by 100 units; the primary data distribution, the crossplot between primary data and 
collocated secondary data and the distribution of the secondary data collocated to primary.  All data are in 
Gaussian units.  
 
The following linear model of coregionalization describes the joint spatial continuity of the primary and 
secondary data: 
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Now, let us consider modeling the primary and secondary random variables via multivariate Sequential 
Gaussian Simulation approach honoring the correlation between random variables at lag distance 0.  
 
The coefficients 12b  and 12a  can be calculated to be equal to 

087.012 =a  and  ,842.012 =b  
thus the coefficient of correlation between residuals of 
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ρ             (25) 

needs to be applied in the multivariate SGS to reproduce the target correlation of 0.8.  
 
Figure 10 shows the distribution of the coefficients of correlation between the primary and secondary 
random variables obtained by multivariate Sequential Gaussian Simulation with the residual’s coefficient 
of correlation given in (25).  Note from Figure 10 that the target correlation is acceptably reproduced. 
 
Figure 11 shows the variogram reproduction for the primary and secondary random variables obtained in 
multivariate Sequential Gaussian Simulation with correlation coefficient between residuals fixed at 0.847.  
Note that variogram reproduction is acceptable within ergodic fluctuation.  Also it is interesting to note that 
for the considered example the crossvariogram between variables given in (24) is very nicely reproduced 
within ergodic fluctuations, see Figure 12.  
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Local Correlation 
 
With a reasonable practical effort, the correction proposed for multivariate SGS can be localized. That is, 
multivariate unconditional SGS with locally varying correlated residuals T

N
T RR )](,),([)( 1 uuuR …=  

can be developed. The procedure for finding the prescribed locally varying correlation matrix )(uρ  of the 
residuals to reproduce the target correlation-covariance matrix for the random variables to be simulated, 

targetρ , is as follows. 
The residuals T

N
T RR )](,),([)( 1 uuuR …=  are assumed to be independent from location to 

location, that is, 
;,,...,1,,0))(),(())(),(( lkNjiRRCovRRρ ljkiljki ≠∀=∀== uuuu   (26) 

but correlated at the same location with locally varying correlation-covariance matrix )(uρ , that is, 
.,,...,1,),())(),(())(),(( kNjiρRRCovRRρ ijkjkikjki ∀=∀== uuuuu  (27) 

Let us now calculate the correlation-covariance between two simulated values for variables iZ  and jZ , 

respectively, at an arbitrary location u in the study domain, }.,,1{, Nji …∈  These simulated values 

)(uiZ  and )(ujZ  in sequential Gaussian simulation are given by 
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then due to independence between the vector of residuals T
ji RR )]()([ uu and the vector of Simple Kriging 

means T
jSKiSK mm )]()([ ,, uu , 
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Note that 
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where )(,,1),( uu iki nkZ …= , and )(,,1),( uu jkj nlZ …=  denote the )(uin  and )(ujn  closest 

simulated nodes for variables iZ  and jZ , respectively; )(,,1,, ui
i

kSK nk …=λ , and 

)(,,1,, uj
i

lSK nl …=λ , denote the Simple Kriging weights obtained for location u when estimating 

variables iZ  and jZ , respectively. 
 
The Simple Kriging means given in (30) can be rewritten because the simulation is unconditional: 
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where )(,,1),( uu iki NkR …= , and )(,,1),( uu jkj NlR …=  denote the Gaussian residuals generated 

for calculation of the )(uin  and )(ujn  closest simulated nodes to an estimation location u for variables iZ  

and 
jZ , respectively; )(,,1, ui

i
k Nk …=μ , and )(,,1, uj

i
l Nl …=μ , denote the weights given to 

these residuals.   Then, 
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where )(uN  denotes the number of location with residuals common to both random variables; i
s

i
s μμ ~,~  

denote the residual weights assigned to location with residuals common to both random variables; and 
)( sij uρ  denotes the correlation between residuals at location with residuals common to both random 

variables )(,,1 uNs …= .  Moreover, because we aim at 

)())(),(( uuu target
ijji ρZZ =ρ ,    (33) 

the following equality must hold: 
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thus, in order for the multivariate unconditional Sequential Gaussian Simulation to honor the locally 
varying correlation matrix between random variables at lag 0, )(target uρ , the residuals with the following 
correlation structure need to be generated locally for each simulation location u: 
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for  any Nji ,...,1)( =≠ . 
 
This correction is not necessarily positive definite.  Therefore if matrix (35) is not positive definite, a 
positive definiteness correction to this matrix must be applied first at the location of non-positive-
definiteness, then it can be used in multivariate SGS.  The only situation where matrix (35) is known to be 
positive definite at any estimation location u is in the case of multivariate unconditional Gaussian 
simulation with only two random variables. 
 
Conclusions 
 
Multivariate Sequential Gaussian Simulation honoring correlation between variables at lag 0 represents a 
neat alternative to Sequential Gaussian Simulation with Intrinsic Collocated Cokriging and Sequential 
Gaussian Simulation with Simple Cokriging in the case when secondary data is not exhaustively sampled 
or no secondary information is available.  
 
This is because multivariate Sequential Gaussian Simulation approach with correlated residuals is simple; it 
ensures reproduction of all target statistics, that is, mean variance and target direct variograms.  Moreover, 
despite the multivariate SGS honoring the correlation between the variables at lag distance 0 is not 
designed to reproduce the crossvariograms/crosscovariances between variables, we have observed through 
many examples that multivariate SGS usually results in quite good reproduction of the cross variograms, 
while it does not require (on the contrary to Sequential Gaussian Simulation with Simple Cokriging) the 
joint model of covariances to be input to the simulation.  
 
A possible drawback of the approach is the possible non- positive definiteness of the correlation matrices 
for the residuals to be used in multivariate Sequential Gaussian Simulation to honor correlation between 
variables at lag 0.  This must be corrected as part of the algorithm. 
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Figure 1: The histogram of the coefficients 12b  (left) and 12a  (right) obtained in 100 fully dependent and 
fully independent, respectively, multivariate Sequential Gaussian Simulations. 

 
Figure 2: Distribution of the correlation coefficients between  1Z  and 2Z  obtained by multivariate 
Sequential Gaussian Simulation with residual’s correlation coefficient equal to 0.670 (left); Distribution of 
the correlation coefficients between  1Z  and 2Z  obtained by conventional approach (right). 
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Figure 3: The variogram reproduction for 1Z  (left) and 2Z (right) obtained in multivariate Sequential 
Gaussian Simulation with correlation coefficient between residuals fixed at 0.670. 

 
Figure 4: Distributions of coefficients 12b  (top left), 13b  (middle left), 23b  (bottom left), 12a  (top right), 

13a  (middle right), and 23a  (middle bottom),obtained by 100 fully dependent and fully independent, 
respectively, multivariate Sequential Gaussian Simulations. 
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Figure 5: Distribution of the correlation coefficients 12ρ , 13ρ  and 23ρ  obtained by the newly proposed 
corrected multivariate SGS (left) and by conventional approach (right). 
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Figure 6: Variogram reproduction for ,, 21 ZZ  and 3Z  obtained in the multivariate SGS with corrected 
correlation matrix in (15). 
 

 

 
Figure 7: Correlation matrix between 4321 ,,, ZZZZ , and 5Z  reproduced by the newly proposed 
multivariate SGS (left) and by conventional approach (right). 
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Figure 8: The mismatch in the reproduced correlation matrix between 321 ,, ZZZ , and 4Z  obtained by the 
newly proposed multivariate SGS (left) and by conventional approach (right). 
 

 

   
Figure 9: Locations of the 20 primary data (top left) and their distribution (top right); the crossplot between 
primary data and collocated secondary data (bottom left) and the distribution of the secondary data (bottom 
right). The data are in Gaussian units. 
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Figure 10: Distribution of the correlation coefficients between primary and secondary random variables 
obtained by multivariate Sequential Gaussian Simulation with residual correlation coefficient given in (22). 

 

 

 
Figure 11: Variogram reproduction in the direction of major (left) and minor (right) continuity for primary 
(top) and secondary (bottom) random variables obtained in the multivariate SGS with correlation matrix 
given in (22). 

 

 
Figure 12: Crossvariogram reproduction in the direction of major (left) and minor (right) continuity 
obtained in the multivariate SGS with correlation matrix given in (22). 


