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Geostatistics with Location Dependent Moments and Distributions 

David F. Machuca-Mory and Clayton V. Deutsch 

Locally varying distributions can be built by weighting functions anchored at multiple points within a 
geologically homogeneous domain.  These location dependent distributions are locally normal score 
transformed.  The local transformation functions are approximated by Hermite polynomials to reduce the 
storage requirements.  In the same way, other first and second order moments may be approximated.  The 
modelling of these local continuity measures requires a robust automatic fitting algorithm.  The sequential 
variogram fitting algorithm provides the location dependent parameters at anchor points within the 
domain.  The use of the stable variogram model allows a locally changing variogram shape.  

Introduction 

In several standard geostatistical estimation and simulation techniques a single global multivariate 
distribution is assumed to be replicated in every point within a homogeneous domain.  This assumption 
corresponds to the decision of strict stationarity (Chilès & Delfiner, 1999) and defines a set of stationary 1-
point and multiple-point moments.  Weaker decisions of stationarity require only the mean and covariance 
or the variogram be invariant by translation within a domain (Chilès & Delfiner, 1999).  In any case, these 
globally stationary moments are inferred from all samples within a domain deemed statistical and 
geological homogeneous.  This is done since local distributions, probabilities and averages cannot be 
constructed only with one value available at each sample location (Myers, 1989).  

This approach can be unsatisfactory when dealing with phenomena that present significant local variations. 
Locally changing anisotropies and orientations of the local spatial correlation measures are common. 
Ignoring these local non-stationary features may lead to suboptimal estimates.  When calculating the local 
moments by spatial averages and construction the global histogram, it is assumed that all samples have the 
same importance.  Location dependent distributions and moments at a particular location can be obtained 
by assigning a greater importance to the closest samples to such location. This can be accomplished by 
weighting the available samples by a continuously decreasing function of the distance between samples and 
a reference point. When building a location dependent histogram the idea is that the probability 
contribution of each sample decreases as the distance of the sample to the reference point increases. While 
location dependent means, variances and other statistics can then be obtained as weighted averages. 
Location dependent 2-point measures of spatial correlation can also be obtained by weighted averages, but 
using combinations of sample pairs weights. 

In the paper “Weighting criteria for Estimation of Location Dependent Moments” the properties of these 
weights and the methods for obtaining them are discussed. This paper focuses on the estimation of location 
dependent moments and the modelling of their associated parameters. Firstly, the location dependent 
univariate distributions and their associated moments are covered and an exhaustive definition of the local 
normal score transformation based in local Hermite polynomials is proposed. Secondly, several issues in 
the calculation and fitting of location dependent variograms are discussed, and some solutions proposed, 
additionally a locally changing variogram shape is proposed using stable variograms. These methodologies 
are illustrated using a public domain 2D dataset, for which exhaustive maps of the location dependent 
moments are generated. These maps can be used for locally stationary estimation and simulation.  

Locally weighted distributions and local normal scores transformation 

For a local univariate distribution two main issues arise when constructing them with locally weighted 
samples. The first is how to calculate the location dependent distributions and second how to obtain their 
corresponding 1-point moments.  If the range of possible values at any unsampled location is modeled by a 
random variable Z(u) the stationary probability of this variable being in an interval [a,b] is given by 
(Christakos, 2005): 

Pr( ( ) ) ( )u         u
b

Za
a Z b f z dz≤ ≤ = ∀ ∈∫ D     (1) 

Where ( )Zf z is the global probability density function, PDF, of the random variable Z(u).  The stationary 
cumulative distribution function CDF is expressed analytically as: 
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( ) Pr( ( ) ) ( )u         ukz

k k ZF z Z z f z dz
−∞

= ≤ = ∀ ∈∫ D     (2) 

Under the decision of stationarity, these PDF and CDF are invariant by translation, and are inferred from all 
data values available at a domain D considered homogeneous (Deutsch & Journel, 1998). The contribution 
of all samples are the same, regardless their location. By other side, the location dependent PDF and CDF 
can be obtained by weighting the samples by a function that continuously decreases with the distance to a 
reference location, or “anchor point”, o. Thus, the location dependent CDF becomes a convolution of the 
stationary PDF with the distance weighting function ( ; )o uω , centered at o: 

 
1( ; ) Pr( ( ) ) ( ; ) ( ( )) ( )o o u o u u         ukz

k k ZF z Z z f z dzω
η −∞

= ≤ = ⋅ ∀ ∈∫ D   (3) 

Where η is a scaling constant on the weights, in order to make: 

1 ( ; ) ( ( )) ( ) 1u o u u        uZf z dzω
η

∞

−∞
⋅ = ∀ ∈∫ D     (4) 

Thus, the nth 1-point moments are given by: 

 ( )1( ; ) ( ) ( ; ) ( ( )) ( )o u u o u u         unn
ZE Z z f z dzω

η
∞

−∞
= ⋅ ∀ ∈∫ D   (5) 

The location dependent mean is found by doing n =1, and the location dependent variance is given by: 

( ) ( )2 21var( ; ) ( ; ) ( ) ( ; ) ( ; ) ( ( )) ( )o o u o u o u u         un
ZZ E Z E Z z E Z f z dzω

η
∞

−∞
= − = − ⋅ ∀ ∈∫ D      (6) 

These are the analytic expressions of the location dependent CDF and its most important 1-point moments. 
Next, it is explained how to obtain them numerically. 

Location dependent histograms and cdf’s based on continuously varying weights 

The global proportion of data values z(u) less or equal to a cut-off value kz is given by (Goovaerts, 1997): 

1

1( ) ( ; )        u
n

k kF z I z
n α

α
=

= ∀ ∈∑ D      (7) 

That is invariant by translation and do not depend of the relative location of data values, and where: 
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Is the indicator transform of the value z(α).  The global cumulative histogram is then constructed 
assembling in ascending order the proportions obtained for multiple cut-off values. In a similar way, the 
location dependent cumulative histogram with respect to an anchor point o can be constructed by 
calculating the location dependent proportions for different cut-offs: 

1

1
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α
α

ω
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=
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∑

D    (8) 

Where, as above, ( ; )o uω are the weights obtained from a decreasing distance weighting function. Thus, the 
location dependent histogram within a domain D can be built from: 
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With: 

1 if  ( )
( ( ); , )

0 otherwise
   u

u
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⎩
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Then, the location dependent mean can be calculated by: 
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And the location dependent variance: 
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Local normal scores transformation and local Hermite model 

The assumption of multi-gaussianity is adopted by several geostatistical techniques due to the convenient 
characteristics of the Gaussian univariate and multivariate distributions (Goovaerts, 1997).  Since non 
Gaussian distributions are prevalent for geological and environmental variables, in order to apply these 
techniques the univariate distribution needs to be transformed to a standard normal distribution.  

Given a local distribution of arbitrary shape and in original units, ( ; )opF z , and a standard Gaussian 
distribution, ( )pG y , the normal scores transform (Deutsch & Journel, 1998): 

( )1 ( ; )op py G F z−=       (13) 

is used for transforming the original zp values to their standard Gaussian distributed equivalents, yp, In 
practice, the normal scores transform can be characterized by the correspondence between the all original z 
values and the corresponding normal distributed y values, such as (Deutsch & Journel, 1998): 

 ( ; ) ( ) [0,1]o     p pF z G y p p= = ∀ ∈        (14) 

These location dependent correspondences are stored in lookup tables of n sorted values zi and the 
corresponding yi normal values. They can be used for computing back transformation: 

( )1 ( ); ( ; ) 1,...,o o       i i Z iz F G y y i nϕ−= = =     (15) 

Alternatively, the Gaussian transform function Zϕ can be approximated by a series of Hermite polynomials 
(Journel & Huijbregts, 1978; Wackernagel, 2003): 

0
( ; ) ( ) [ ]o o          u

P

i Z i p p i
p

z y H yϕ φ
=

= ≈ ∀ ∈∑ D     (16) 

The coefficients ( )opφ are obtaining by doing:  

0 ( ) [ ( ); ] ( )o u o oE Z mφ = =       (17) 

and: 
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Where g is the standard Gaussian probability density function.  Note that the coefficients ( )opφ are location 
dependent.  These are expressed as: 

0
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=
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    (19) 

The number P of Hermite polynomials must to be chosen high enough to make: 

2 2

1
( ) ( )o o

P

Z p
p

σ φ
=

≈∑       (20) 

which is usually between 12 and 20. The programs that implement the local normal scores transformation 
and Hermite polynomials are described next. 

Software implementation for location cdf’s and local normal scores transformation 

Before proceeding with the local normal scores transformation, a number of quantiles must be generated 
for the local distributions. This can be done using the Histpltsim program (Neufeld & Deutsch, 2007). 
This program is aimed for plotting the cdf’s of each realization in a simulated model, but can also be used 
for plotting the cdf’s and generating multiple quantiles for differently weighted distributions. An example 
of parameter file for Histpltsim is shown in the Figure 1.  Instead of a file containing the simulated 
realizations, the output file of the LDW-gen program (Machuca-Mory & Deutsch, 2008) is used as input 
file. It is important to specify the column with the distance based weights in this file.  The number of 
realizations corresponds to the number of anchor points considered. A numeric output is selected and the 
number of cumulative quantiles recommended is at least 99. 

 

 
Figure 1: Parameter file for Histpltsim program used al local quantiles generator. 

The ordered cumulative local quantiles in the numeric output of Histpltsim program are normal scores 
transformend using a modified version of the nscore program (Neufeld & Deutsch, 2007). This version, 
called nscore-loc, requires that the number of quantiles and anchor points be specified. The 
corresponding parameter file is presented in Figure 2. 
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Figure 2: Parameter fire for local normal scores transformation program, nscore-loc. 

The Herco-loc program uses the transformation table provided by nscore-loc, to generate the 
location dependent Hermite coefficients for each anchor point. The output file with the Hermite coefficients 
also contains the coordinates of their corresponding anchor points. The parameter file for Herco-loc 
program is shown in Figure 3. 

 
Figure 3: Parameter fire for the local Hermite coefficients calculation algorithm, Herco-loc. 

Calculation and fitting of Location dependent variograms  

When obtaining 2-point moments the 1-point distance based weights ( ; )o uαω corresponding to the sample 
pair endpoints can be combined making use of mixture rules (Korvin, 1982; Machuca-Mory & Deutsch, 
2008), such as the arithmetic average: 

( ; ) ( ; )( , ; )
2

u o u h ou u h o α α
α α

ω ω
ω

+ +
+ =      (21) 

Or the geometric average: 

( , ; ) ( ; ) ( ; )u u h o u o u h oα α α αω ω ω+ = ⋅ +     (22) 

Where uα  and u hα + are two sample locations separated by a vector h. Experimentation show that any of 
these two average types yield to similar results (Machuca-Mory & Deutsch, 2008). 

Location dependent variograms, correlograms and covariances 

Using the 2-points distance based weights, location dependent experimental semivariogram is calculated as: 

( )
( )

2
( )

1

1

1( ; ) ( , ; ) ( ) ( )
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N
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=
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∑
∑

   (23) 

While the location dependent covariance can be obtained from: 
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And the location dependent experimental correlogram is given by: 
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In practical applications the experimental location dependent correlogram is preferred over the location 
dependent variogram. The interpretation of correlogram sill value is straightforward. The location 
dependent correlograms are clearly interpreted as the coefficient of correlation between sample values at a 
given separation vector h.  Whereas the value of variogram sill is can be lower in certain directions due to 
zonal anisotropy or can show an increasing drift that reflects a trend (Gringarten & Deutsch, 2001).  
However, location dependent variograms are sensitive to the sample weighting 

Semiautomatic fitting of local model parameters and shape 

Location dependent experimental variograms, correlograms and covariances are calculated in relation of 
multiple anchor points conveniently located within a domain. The number of these anchor points is usually 
around a few hundreds. Fitting the models for such a large number of spatial continuity measures is only 
practical with the help of automatic or semiautomatic fitting algorithms. Semiautomatic fitting can be 
performed iteratively by slightly changing the variogram model parameters in order to minimize the next 
function objective: 

  ( )2ˆ( ; ) min ( ) ( ; ) ( ; )h o h h o h oO λ γ γ⎡ ⎤= ⋅ −⎣ ⎦     (28) 

Where ( ; )h oγ is the experimental variogram value at a lag h, and ˆ( ; )h oγ  is the corresponding variogram 
model value. ( )hλ is the weight assigned to the lag h proportional to its inverse distance to the origin, the 
number of pairs used in the calculation of its corresponding variogram value, or both (Larrondo, Neufeld, 
& Deutsch, 2003).  

The parameters are chosen randomly and iteratively. A random small perturbation is applied to the chose 
parameter, and the impact of the modified variogram model is evaluated according the objective function 
(28). Unless fixed to a certain value, the variogram model parameters that are considered in this 
optimization are the nugget effect, the ranges, the anisotropy orientation and the sill. By contrast, the 
variogram shape is fixed in order to avoid switching one model to another between adjacent locations. 
However highly continuous and smooth areas require a continuous variogram model, such as the Gaussian, 
and discontinuous zones are better modelled with a spherical or exponential variogram. To address this 
issue locally changing variogram shape can be used, such as the stable model (Chilès & Delfiner, 1999): 

 
( )

3ˆ( ; ) ( ). 1 exp 0 ( ) 1
( )

o
hh o o       o
o

c
a

β

γ β
⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥⎜ ⎟= − − < ≤⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

    (29) 

The shape of this model is controlled by the power value ( )oβ , it is the Gaussian model when ( ) 1oβ = and 
it is equal to the exponential model for ( ) 2oβ =

 

(see figure  4). Note that this and the other model 
parameters, such as the sill c(o) and the range a(o) are referred and depend of the location o. By 
incorporating the perturbations of the power value parameter, a continuously changing variogram shape can 
be fitted at the anchor points within the domain.  
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Figure 4: stable model shape according to different power values. 

In theory multiple structures could be fitted, in practice instead, not more than two structures are 
recommended. The reason for this is that the higher the number of variogram structures fitted, the higher 
are the degrees of freedom in the fitting algorithm, which is translated in an increased instability of fitted 
parameters.  Nevertheless, anomalous parameter values may be fitted using this semi-automatic algorithm 
at some of the several anchor points. This may occur even when restricting the number of variogram 
structures. Anomalous parameter values can be reduced by introducing penalties for the extremely high or 
extremely low values. The penalty function can take different forms, a simple one is quadratic: 

2
, ,0 ,( ( ) ( ))o o    i iK b k k iα α α

+= ⋅ − ∈

    

(30) 

This is, for a parameter α, the corresponding penalty value ( )K iα is proportional to the square difference 
between the base parameter value ,0 ( )okα and the value assigned to this parameter at the iteration i, , ( )oikα . 
This square difference can be multiplied by a positive factor, b, in order to strengthen the penalty applied to 
divergent parameter values. The base parameter value can be taken from the globally stationary variogram 
model. The objective function (29) becomes: 

( )2

1

ˆ( ; ) min ( ) ( ; ) ( ; )h o h h o h o
Np

O Kα
α

λ γ γ
=

⎡ ⎤
= ⋅ − +⎢ ⎥

⎣ ⎦
∑     (31) 

Where Np is the number of penalized parameters.  These penalties, however, do not completely eliminate 
the occurrence of anomalous parameter values, unless the strengthening factor b is considerably increased 
at expense of fitting flexibility. Posterior identification and correction of anomalous local parameter values 
are often necessary.  

There are several methods for the identification of spatial outliers; these can be grouped in graphic and 
quantitative test (Lu, Chen, & Kou, 2003). Graphic approaches rely on maps and diagrams that highlight 
the anomalous values. Quantitative algorithms evaluate if the difference or the ratio between a sample 
value and a statistic calculated from neighbouring samples falls outside a tolerance interval. This can be 
done iteratively until no other ratio or difference outside the tolerance interval can be identified (Lu, Chen, 
& Kou, 2003). The statistic of local neighbouring values can be equally weighted or weighted by their 
inverse distance to the location where a value is evaluated (Kou, Lu, & Chen, 2006).  

Once the locally anomalous variogram parameter values are identified, several alternatives are available for 
the parameter correction. The first one is the manual fitting of the variogram for the anchor point o. This 
alternative is not recommended since it easily can turn tedious and the final manually fitted parameters may 
diverge of the semi-automatically fitted parameters at the neighbouring anchor points. A straightforward 
option is just to replace the local variogram models that present anomalous parameters by new local 
variogram models whose parameters have been interpolated from neighbouring anchor points. Finally, a 
robust local variogram fitting algorithm can be used. This algorithm is described next. 

 

β= 0.3

β= 1.0

β= 1.5

β= 2.0

β= 0.5
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Robust fitting of location dependent variograms 

The steps proposed for this algorithm are the following: 

1. Perform semi-automatic fitting of the local variograms at all anchor points with default initial 
values for local parameters. Penalty functions can be applied at this point. 

2. Check sequentially for locally anomalous parameter values. These can be identified by one of the 
spatial outlier detection methods indicated before. The tolerance interval and other constraints for 
outlier identification can be modified by the user. 

3. If an anomalous variogram parameter is identified the local variogram model at the corresponding 
anchor point. Now the initial parameter values for the fitting algorithm are the spatially weighted 
averages of the parameter values fitted at neighbouring anchor points. If no outlier value is found 
at this anchor point, move to the next and repeat from 2. 

4. Check the new local parameters for values exceeding the tolerance interval. If none is found, move 
to the next anchor point and repeat from 2. Conversely, if anomalous parameters are still present, 
proceed with the second part of the algorithm. 

5. Fit again the local variogram models alternating the lag weighting criteria. Keep the fits that yield 
the minimum error. Continue from 2 until no improvement is possible or all the anchor points are 
visited. 

This algorithm is still in development. Currently the programs available for location dependent variograms 
correspond to the location dependent variogram calculation, Gamvlocal, and semiautomatic variogram 
fitting in a single pass, Varfit-loc. These programs are described next. 

Software implementation for location dependent variograms 

The Gamvlocal program allows the calculation of location dependent experimental variograms for 
untransformed and locally normal scores transformed data values. The parameter file for the current version 
of Gamvlocal is presented in figure 5. The input file is the output file containing the original values or 
the locally normal scores transformed values and their corresponding weights assigned with respect to the P 
anchor points defined. Thus, this file must to have N P× entries, where N is the total number of samples, 
including those with values beyond the trimming limits. Two options for the mixing rule of 1-point weight 
to 2-points weights are available: geometric or arithmetic average, see (21) and (22).  The program reads 
the data values and weights, and combines the required pairs for each experimental variogram direction and 
tolerances. The current version allows the calculation of location dependent variograms, covariances and 
correlograms, a future version will include all the variogram types available at the Gamv2004 program 
(Neufeld & Deutsch, 2007). The output file consists of the experimental location dependent variogram, 
covariance or correlogram in the Gamv2004 output format. In order to facilitate the automatic model 
fitting of local correlograms the value 1 ( ; )h oρ− is reported in the output file. 

 
Figure 5: parameter file for the Gamvlocal program.  
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The Varfit-loc program is based in the Varfit program (Neufeld & Deutsch, 2004) for globally 
stationary variogram modelling. It reads sequentially for every anchor point the experimental variogram, 
covariance or correlogram values from a Gamvlocal program output file. The parameter file (see fig 6) is 
similar to Varfit’s parameter file. In the main parameters block, the only additions are the lines for 
specifying the number of anchor points, for the folder and prefix of the graphs of local model fitted at each 
anchor point, and for a summary of the fitted parameters at each anchor point. The Varfit-loc program 
allows the fitting of stable variogram models for the first structure. If this model is not used, it is 
recommended to use the model(s) used for the globally stationary variogram as fixed the structure type(s). 
Penalties are imposed only if the corresponding parameter is not fixed; in this case a penalty factor is 
required. The higher this factor is the stronger will be the penalty for diverging parameter values. 

 
Figure 6: Parameter file for the Varfit-loc program. 

Example 

The datasets for illustrating the location dependent moments approach have been taken from the well 
known Walker Lake dataset (Isaaks & Srivastava, 1989). For the sake of comparison a clustered and a 
gridded data set are considered (see figure 7). In the gridded data set samples are arranged in a semi-regular 
grid of 10m x 10m.  Anchor points were located in a regular mesh of 20m by 20m, adding up to 195 points. 
All the moments and parameters were obtained first at each anchor point by weighting all the samples 
inversely proportional to the distance to them. The distance weighting function used was a Gaussian kernel 
with a standard deviation of 20. Once obtained the location dependent moments and parameters at each 
anchor point, these values were smoothly interpolated at high resolution within the entire study area. The 
interpolation technique chosen was global ordinary kriging with a spherical isotropic variogram model of 
range 100m and a nugget effect of just 1% of the sill value. 
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The local means and variances calculated for both data sets at each anchor point are shown in figure 8 
overlying their corresponding interpolated values. In Figure 9 the local P25, median and P50 quantiles are 
plotted. The 195 local cdf’s are shown in Figure 10, there it can be observed a significant variation of the 
local cdf’s in comparison to the global cdf. The proportional effect is reflected by the positive correlation 
between location dependent means and variances (see figure 11). The local normal scores transformation 
functions were modelled using 30 Hermitian coefficients at each anchor point. Figure 12 shows the 
interpolated values of the three first coefficients.  

 
Figure 7: Exhaustive, clustered and gridded datasets of the Walker Lake site. 

 

The weights used for experimental local correlograms calculation were obtained from the geometric 
average of the distance based weights assigned to each end of the sample pairs. Geometric averages of 
these weights yield to similar experimental variogram values as arithmetic averages for short to medium 
distance lags. The difference is appreciable only at the longest lags.  With the purpose of allow a proper 
functioning of the semi-automatic variogram fitting algorithm the 1 ( ; )h oρ− values were used for 
modelling the variograms instead of the correlogram values. For the clustered data set, the local 
experimental 1 ( ; )h oρ− values were fitted using a single exponential structure. The interpolated local 
correlogram parameters are shown in Figure 13. For the gridded data set were used alternatively an 
exponential and a stable variogram models (see Figure 14). Note in the plots of location dependent 
variogram parameter that, for both the clustered and gridded data sets, reflect the local features of data. 
This is particularly clear for the anisotropy orientations and ratios. 

Discussion and Conclusions 

The location dependent distributions are constructed by considering distance weighting functions with the 
global stationary distribution.  Since it would be very demanding to define these weighting functions at 
every location, they are anchored at a limited number of points. The location dependent distributions 
incorporate not only the modeling of a locally varying mean but also of a non-stationary variance. These 
local distributions may be considerably different of the globally stationary distribution. 

An exhaustive definition of the locally varying distributions may be obtained by interpolating the 
percentiles of the local distributions between anchor points. Alternatively, the distributions can be modelled 
by limited number of Hermite polynomials, which reduce the dimensionality of working with 100 or more 
quantiles. This approach is applied for the exhaustive modeling of the local normal scores transformation 
function. 

The local normal scores transformation of the location dependent distributions allow the application of 
Gaussian based algorithms in a locally stationary framework. Modelling the local normal scores 
transformations by local Hermite coefficient reduce the dimensionality compared to using local 
transformation tables. The smooth interpolation of the local Hermite coefficients allows the exhaustive 
definition of the functions of local transformation and back-transformation 
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Location dependent measures of spatial continuity are obtained using the same weights used for location 
dependent distributions and 1-point moments. Correlograms are preferred for their robustness and 
straightforward interpretation. Modelling is performed sequentially and semi-automatically at every anchor 
point. The local data fluctuations and outliers may cause anomalous values in fitted parameters. A robust 
fitting algorithm has been devised, but it is still in development. However, overall the fitted variogram 
parameters reasonably reflect the local features of the data values, particularly the local anisotropy ratios 
and orientations.  
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Figure 8: Local means and standard deviations for the clustered (above) and gridded data sets (below) 
calculated at anchor points  (circles) and interpolated between them. 

 

 
Figure 9: Local quartiles for the clustered (above) and gridded (below) data sets 
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Figure 10: global (bold red curve) and local cdfs (black curves) for clustered (left) and gridded (right) data. 

 
Figure 11: Proportional effect reproduced by the location dependent mean and standard deviation. 

 
Figure 12: interpolated values of the three first coefficients of thirty used for modelling the local normal 
scores transformation function. 
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Figure 13: Local exponential model parameters for the clustered data set 

 

 
Figure 14: Local exponential model parameters for the gridded data set 


