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Multiple Point Metrics to Assess Categorical Variable Models 

Jeff B. Boisvert, Michael J. Pyrcz, and Clayton V. Deutsch 

Geostatistical models should be checked to ensure consistency with conditioning data and statistical inputs.  
These are minimum acceptance criteria.  Often the first and second order statistics, such as the histogram 
and variogram, of simulated geological realizations are compared to the input parameters to check the 
reasonableness of the simulation implementation.  Assessing the reproduction of statistics beyond second 
order is often not considered because the ‘correct’ higher order statistics are rarely known.  With multiple 
point simulation (MPS) geostatistical methods, practitioners are now explicitly modeling higher order 
statistics taken from a training image.   This paper explores potential methods for extending minimum 
acceptance criteria to multiple point statistical comparisons between geostatistical realizations made with 
multiple point statistical simulation algorithms and the associated training image.  The intent is to assess 
how well the geostatistical models have reproduced the input statistics of the training image; akin to 
assessing the histogram and variogram reproduction in traditional geostatistics.  A number of metrics are 
presented to compare the input multiple point statistics of the training image with the multiple point 
statistics of the geostatistical realizations.  These metrics are (1) first and second order statistics (2) trends 
(3) the multiscale histogram (4) the multiple point density function and (5) the missing bins in the multiple 
point density function.  A case study using MPS realizations will be presented to demonstrate the proposed 
metrics; however, the metrics are not limited to specific MPS realizations.  Comparisons could be made 
between any reference numerical analogue model and any simulated categorical variable model. 

Introduction 

Geostatistical algorithms are intended to reproduce input statistics within ergodic fluctuations, that is, the 
statistical fluctuations due to a limited model size relative to spatial correlation range (Deutsch and Journel, 
1998).  Yet, due to the complexity of geostatistical algorithms, workflows and the associated trade craft; 
errors may occur.  These errors may result in significant bias in reserves estimates, fluid flow or mineral 
recovery prediction.  These errors may include blunders (e.g. inflated correlation due to the application of 
the same random number seed for primary and secondary variables in collocated cosimulation), poor 
implementation (e.g. loss of long range correlation due to overly constrained search limits) or algorithm 
limitations (e.g. unreasonable short range variability inherent to the sequential indicator simulation 
method).  To avoid such errors, it is essential to compare statistics of simulation output against input 
statistics. 

Leuangthong, McLennan and Deutsch (2004) described the minimum acceptance criteria approach to 
variogram-based geostatistics.  They demonstrated the need to check the expectation of first and second 
order moments, the property distribution functions and the spatial continuity as characterized by the 
semivariogram.  They also propose the use of cross validation and accuracy plots as additional checks of 
local accuracy and uncertainty models.  The goal of this paper is to go beyond the first and second order 
moments and present metrics that can assess the higher order statistics of geostatistical realizations; 
therefore, extend minimum acceptance to MPS methods. 

The increasing popularity of MPS is due to the recognition that statistics beyond the second order 
variogram have a significant impact on resource models (Liu and others, 2004, Strebelle, 2002).  
Traditional geostatistics assumes a maximum entropy multiGaussian model for all statistics beyond the two 
point variogram.  This results in maximum disconnection of high and low values and the reproduction of 
only linear spatial features (Deutsch and Journel, 1998) and often biased results in subsequent transfer 
functions such as flow simulation, mine design or reserve calculations.  For example, in flow simulation 
maximum entropy spatial continuity results in the break up of barriers, baffles and conduits, resulting in 
dispersive flow patterns and biased estimates of sweep efficiency.  MPS simulation mitigates the 
limitations of the multiGuassian distribution by inferring multiple point statistics beyond the variogram 
from a representative TI; however, if MPS algorithms are to be used to generate geostatistical realizations 
with the desired MPS, the reproduction of these MPS should be assessed.  Literature on assessing the 
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multiple point characteristics of realizations is lacking because of the inherently complex nature of a 
multiple point statistic.  Consider the multiple point density function (Figure 1), often used as the input to 
MPS simulation algorithms.  This density function counts the frequency of a particular facies configuration.  
The multiple point density function can be used to generate MPS realizations, but due to its high 
dimensionality it is not easily visualized and it cannot be modeled analytically, rendering it a poor criteria 
for judging the acceptability of a model.  This paper will provide alternative metrics and summary statistics 
that can be used to compare the multiple point statistics of input training images and the associated 
realizations.  With the greater degree of control of spatial heterogeniety available with multiple point 
geostatistics, checking these higher order statistics will be even more important to ensure a reasonable 
reproduction of input statistics. 

The proposed metrics are not limited to assessing MPS realizations, they could also be used to (1) compare 
MPS algorithms with other facies modeling techniques such as SIS or truncated Gaussian simulation, (2) 
rank realizations, (3) determine the fitness of realizations, (4) help select algorithmic input parameters or 
(5) assess the MPS characteristics of traditional geostatistical realizations.  Previously, a subset of these 
metrics were applied to test training image and conditioning data consistency (Boisvert, Pyrcz and Deutsch, 
2007). 

 

Figure 1: A multiple point density function of the example TI shown. Four point configuration with two 
indicators. 

Background 

Recognition of the limitations of the multiGuassian distribution lead to the initial work on MPS simulation 
(Deutsch, 1992 and Guardiano and Srivastava, 1993).  Later, the development of a practical MPS 
simulation algorithm, SNESIM (Strebelle, 2002), led to the wide adoption of MPS simulation for reservoir 
facies simulation.  Numerous published case studies are available to demonstrate the practice and 
advantages of MPS simulation (Strebelle, Payrazyan, and Caers, 2003, Caers, Strebelle, and Payrazyan, 
2003, Harding and others, 2004, Liu and others, 2004 to name a few). 

Multiple Point Statistics 

MPS consider the relationship between more than two locations.  MPS techniques are often compared to 
two point statistics.   Two point statistics, such as the variogram, quantify linear spatial continuity, while 
MPS allow for the reproduction of curvilinear heterogeneity patterns and data ordering relationships. 

The multiple point density function is commonly used in MPS algorithms.  The traditional histogram 
counts the frequency of times a particular continuous variable falls in a bin, or counts the frequency of 
times that a particular categorical variable occurs.  The multiple point density function counts the frequency 
of times a multiple point configuration occurs; in other words, the conditional probability of an outcome 
given the specific categories at surrounding locations.  Consider a 4 point configuration that could take two 
different values, there are a total of 16 (24) unique configurations.  The frequency of each configuration in 
the image constitutes the multiple point density function (Figure 1).  Note that the ordering of the bins 
(Figure 1) is arbitrary, only order consistency is required.  Considering a larger template or more categories 
significantly increases the number of bins in the multiple point histogram (number of bins is equal to the 
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number of categories to the power of the number of points), making visualizing the multiple point 
histogram for large templates challenging to impossible. 

Using Multiple Point Statistics 

Multiple point histograms can be calculated along wells, but in general, a training image is required that 
provides a quantification of the patterns likely to be encountered. 

Techniques available for MPS include: using the single normal equations (Guardiano and Srivastava, 1993 
and Strebelle, 2002); using simulated annealing with the multiple point histogram as the objective function 
(Deutsch, 1992); updating conditional distributions with multiple point statistics (Ortiz and Deutsch, 2004); 
training neural networks on training images (Caers, 2001); using a GIBBS sampler (Lyster and Deutsch, 
2008); and pattern-based approaches (Eskandari 2008, Arpat and Caers, 2007 or Wu, Zhang and Journel, 
2008). 

Methodology 

The true distribution at any geologic site will remain unknown and it is impossible to completely validate 
or verify a numerical geological model (Oreskes, Shrader-Frechette and Belitz, 1994).  Nevertheless, 
geological models can be subjected to a series of tests that increase their credibility rather than verify their 
correctness, this is deemed model confirmation (Oreskes, Shrader-Frechette and Belitz, 1994).  A basic 
model confirmation would be a check on the first and second order statistical properties of the models 
(Leuangthong, McLennan and Deutsch, 2004).  Models failing to reproduce the basic histogram/variogram 
should be rejected, unless there is an application specific reason to expect such a departure (i.e. biased 
sampling).   

The primary confirmation of any geologic model is a visual assessment.  In the case of MPS models the 
visual inspection should be an examination of artifacts specific to the algorithm used and for the 
reproduction of large/small scale features if appropriate.  Multiple point statistic based techniques are 
implemented because there is a belief that non-linear features, such as channels or complex folding 
patterns, and ordering relationships are important to the transfer function.  Frequently, the assessment of the 
reproduction of non-linear features and ordering relationships is best performed with a qualitative visual 
inspection rather than some type of quantitative summary statistic or multiple point statistic metric.  This is 
the first level of model confirmation for MPS models. 

Model confirmation for MPS based techniques can also include higher order tests because of access to the 
correct MPS in the form of the TI.  High order statistics are explicitly contained in the TI and should be 
reproduced in the MPS realizations.  Visualization and a direct comparison of input and output high order 
statistics is not possible, but the proposed metrics provide a relative measure of high order statistical 
reproduction from the TI.   

Reasons for not reproducing the exact MPS of the TI include; (1) realizations are often conditioned to data 
which imposes a constraint on the possible multiple point statistics of the realizations, (2) MPS algorithms 
are often non-exact and even iterative and may become trapped in a sub-optimum solution and (3) ergodic 
fluctuations.  It is necessary to assess how well the high order statistics are reproduced in MPS realizations; 
such tests lend support to the use of the numerical simulation results. 

Seven metrics will be presented to assess the reproduction of input statistics in multiple point realizations: 
(1) first and second order checks (2) global trends (3) local trends (4) multiscale histograms (5) behavior of 
distribution tails (6) the multiple point density function (7) missing bins in the multiple point density 
function.  The specifics of each metric will be discussed with the following case study. 

The Case Study  

The proposed metrics will be demonstrated with a simple case study.  For this study a TI was generated by 
a simple binary object-based training image generator with channel objects in background overbank.  
Channel objects with concave upward bases and flat tops where generated with stochastic geometries 
(width 40 m, width to depth ratio 10:1 and sinuosity 1.6 parameterized by constant amplitude and 



 112-4 

wavelength.  These channels were positioned by a Poisson point process until the global proportion of 27% 
was matched in a model with extents 2,000 m x 1,000 m and 80 m vertically.  The grid cells are 10 m in the 
horizontal and 1 m in the vertical.  Unconditional geostatistical realizations were generated on the same 
grid used for the training image with the version of SNESIM presented in Strebelle (2007).  Conditional 
realizations could have been generated, but for demonstrating the methods for checking the multiple point 
characteristics, unconditional realizations are sufficient. 

To assess the proposed metrics, 10 realizations were generated using various multiple point template sizes 
(1, 2, 8, 16, 24, and 56) in the simulation.  A simple trend model was constructed with polygons and a filter 
as described by Strebelle (2007).  The trend is intended to represent a fair way with greater concentration of 
channel elements.  The global average of the trend model was set to the target channel proportion in the 
MPS realizations to ensure consistency.  This resulted in MPS realizations with varying consistency with 
the training image (Figure 2). 

These realizations are checked against the input training image.  The following metrics are applied; (1) first 
and second order statistics, (2) trends, (3) multiscale histogram, (4) multiple point density function and (5) 
missing bins in the multiple point density function. 

 

 

Figure 2: Visualizations of the input training image, trend model and realizations with 1, 4, 16 or 56 point 
templates, excluding the origin. All models are identically sized.  TI and realizations contain only two 
facies. 
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First and Second Order Statistics 

While the goal of MPS simulation is to reproduce higher order statistics, the lower order checks proposed 
by Leuangthong, McLennan, and Deutsch (2004) should still be preformed: 

• Ensure that the exact data values are reproduced at data locations.  
• Histogram and variogram reproduction.  Within acceptable ergodic fluctuations these statistics 

should be well reproduced. 
• Cross validation and accuracy plots to check local accuracy and uncertainty model. 

The purpose of this paper is to supplement (not replace) these basic tools with metrics that can better assess 
the multiple point characteristics of geostatistical models. 

Trends 

All geological modeling techniques assume a form of stationarity.  This allows the practitioner to ‘pool’ 
their data and infer meaningful statistics for modeling.  In the context of MPS, the multiple point density 
function is often assumed stationary that is, the multiple point density function of the TI is assumed to 
apply everywhere in the modeling domain.  As in traditional geostatistical techniques, a trend can be used 
to enforce non-stationary proportions of specific facies that cannot be captured in the TI.  If a trend is used 
in geostatistical modeling, its reproduction in subsequent realizations should be checked.  The reproduction 
of a trend will be assessed in two ways; (1) globally for a single realization or (2) locally over a set of 
realizations.   

Evaluating the reproduction of the trend for a single realization ensures that the trend is reproduced in 
expected terms over the realization without concern for local accuracy.  For example, all locations where 
the trend map indicates a proportion between 0.2-0.3 can be examined (Figure 3).  For a single realization 
the proportion in the shaded area should be about 0.25.  The expected trend proportion from the trend 
model can be compared to the actual proportion in the realization (Figure 4).  Using a different multiple 
point template in SNESIM generates a range of results.  Using 2, 4, 8, 16 or 24 points seems to generate 
models where too much emphasis is placed on the trend; where the trend proportion is high the realization 
proportion is even higher, where the trend proportion is low the realization proportion is even lower.  A 
sufficiently large template (in this case at least 32 points) must be selected for reasonable trend 
reproduction.  Alternatively, the trend may not be given sufficient weight (Figure 5). 

Assessing the local trend ensures that on average the realizations honor a local trend at a specific location.  
The average proportion over all realizations at each location is compared to the actual trend proportion 
(Figure 6).  A randomized plot close to zero is desirable, as shown by the realizations with MP templates 
larger than 16 points.  Areas that are consistently high or low do not reproduce the trend well (upper plots 
on Figure 6).   

 
Figure 3: Proportion map.  The shaded region indicates areas where the realization proportions should total 
between 0.2-0.3. 
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Figure 4: Global trend check.  Each plot represents a different set of 10 realizations (lines) using 
1,2,4,8,16,24,32 and 56 point statistics in SNESIM.  All axis are identical and indicated in the first plot. 

 
Figure 5: Solid black line – trend is not receiving enough weight.  Solid gray line – trend is receiving too 
much weight.  Dashed black line – trend is ignored, global proportion is used for generating the 
realizations. 

 
Figure 6: Local trend check.  Plotted is the (trend map) – (average realization proportion).   

Multiscale Histograms 

Geostatistical realizations are commonly used to generate an average value at a scale larger than the 
modeled block size (e.g. selective mining unit in mineral resources and upscaled flow simulation grid in 
reservoirs).  In this application the behavior of the realizations as they are scaled to the desired volumetric 
support is critical.  One possibility is to visually assess and compare the behavior of the scaled histogram of 
the TI to that of the realizations.  Ideally, the histograms of the TI and the MPS realization at different 
scales would be identical.   
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Figure 7: Histogram changing with block 
averaging.  The main histogram represents 
the TI.  A 16 multiple point simulation scaled 
histogram is shown as horizontal dashes.  
Overlain are slices for each volumetric 
support for the TI (below in each histogram) 
and MPS realization (above in each 
histogram). 

The behavior of the multiscale histogram is dependent on 
the underlying spatial structure of the training images and 
realizations.  In this case study the upscaled realizations 
average to the global proportions quicker than the TI 
(Figure 7).  This indicates more structure (i.e. connected 
channels) in the TI than in the MPS realizations.  Less 
structured models quickly scale to the global 
average/proportion (Figure 7).  More structured models will 
remain bimodal at larger scales.   

 
The behavior of the tails of the multiscale distribution is 
critical to resource calculation.  How these tails change as 
the support of the histogram increases is a function of the 
multiple point distribution of the realization.  If the tails in 
the MPS realizations disappear or average out at a smaller 
volume than the TI there is too little structure in the 
realizations (Figure 8).  Specifically, this indicates that the 
highs and/or lows in the MPS realizations are too 
disconnected and the practitioner should assess if this will 
affect the desired upscaled properties. Conversely, the 
realizations may contain additional structure, in which case 
the tails of the TI will disappear more quickly.  In this case 
the practitioner should examine the cause of the increased 
connectivity of extremes in the MPS realizations and again 
assess the importance.  This could be due to a trend model 
that does not appear in the TI or unwarranted structure 
added by the simulation algorithm.  MPS simulation 
parameters (e.g. template size) can be adjusted to better 
match the scaling properties of the TI.   

Multiple Point Density Function 

Akin to checking the variogram reproduction with 
traditional geostatistical approaches the reproduction of the 
multiple point density function should be assessed.  

Checking the multiple point density function is 
complicated by its high dimensionality; even small 
templates are difficult to visualize because of the large 
number of bins.  Moreover, the lack of an intuitive 
ordering to the MPS bins negates any reduction in 
dimensionality (Figure 1).  A solution to this problem 
was proposed by Boisvert, Pyrcz and Deutsch (2007) 
where a difference measure is calculated between two 
multiple point density functions.  This can be applied 
to compare MPS realizations to the input TI (Figure 9).  
The difference measure is the sum of the absolute difference between each bin in the multiple point density 
function.  Ideally this would be near zero, indicating similar multiple point histograms.  This metric can be 
used to tune input parameters; for example, in the case study using more than 24 points in the MPS 
simulation does not provide significant gains based on this metric (Figure 9). 

While this comparison is useful for assessing multiple point characteristics, it is important to realize this 
difference measure reduces a very high order statistic to a single value.  Much information contained in the 
multiple point density function is lost. 
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Figure 8: Checking the fraction in the tails when block averaging.  The TI and realizations are binary; 
therefore, the tails represent the only indicators present. 

 
Figure 9: Left: Sum of the absolute difference between the multiple point density function of the TI and the 
realizations.  Right: Proportion of implausible configurations.  Points represent a realization using either 4, 
8, 24 or 56 MP statistics.  The number of bins in the MP density function are plotted in brackets on the x-
axis to emphasize the nonlinearity of the scale.  Note the broken scale to show the 2x2x2 configuration. 

Missing or Zero Bins 

Of concern in a practical MPS application are the multiple point bins that have zero frequency.  An 
assumption is made that the TI is representative of the modeling domain; therefore, if a configuration does 
not exist in the TI it is implausible and should not exist in the realizations.  In practice, these implausible 
configurations do exist in MPS realizations.  Consider the significant proportion of implausible 
configurations found the case study for large template sizes (Figure 9).  This check should be preformed for 
each MPS realization, with preference given to realizations that have a lower proportion. 

Discussion 

This paper has presented seven metrics to assess the multiple point statistical characteristics of 
geostatistical realizations (Table 1).  Each metric attempts to summarize a high level statistical relationship 
in a way that can be compared, either quantitatively or qualitatively, to a reference statistic provided by the 
TI.  Not all metrics will be useful in all applications.  Poor performance of a model on one metric is not 
reason to reject the model if the metric is not relevant to the intended purpose of the model; however, good 
performance on any metric increases the credibility of the model and a failure should raise suspicions as to 
the models appropriateness. 
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Table 1: Summary of assessment metrics. 
Measure Pros Cons Appropriateness 

First and 
second order 
statistics 

-easily inferable from data 
-well understood metrics 

-only captures linear correlation 
between data 

-should always be 
checked 

Global trend -ensures algorithm is reproducing 
the trend globally - no measure of local accuracy -should be checked if 

using a trend 

Local trend -ensures algorithm is reproducing 
the trend locally 

- require a significant number of 
realizations to check 

-should be checked if 
using a trend 

Multiscale 
histogram 

-important for upscale calculations 
of reserves 

-can be used to tune algorithmic 
parameters 

-not explicitly reproduced with 
typical simulation algorithms 

-qualitative comparison of spatial 
structure at multiple scales  

-use if upscaled 
properties are of 
interest 

Fraction in 
tails 

-a good summary of the multiscale 
histogram 

-can be used to tune algorithmic 
specific parameters 

-important for many resource 
volume calculations 

-may be influenced by non-
stationarity (trends) 

-use if upscaled 
properties are of 
interest 

Multiple point 
density 
function 
difference 

-summarizes the multiple point 
density function to a single value 

-can be used to tune algorithmic 
specific parameters 

-some critical information may be 
lost due to oversimplification 

- use for a relative 
comparison of multiple 
implementations 

Missing or 
zero bins 

-can be used to tune algorithmic 
specific parameters 

-zero bins may actually be 
plausible but not represented in 
the TI 

-zero bins should not 
appear in realizations 

 

MPS model confirmation cannot be addressed without discussing the inference of  input statistics.  All 
metrics discussed in this paper compare the models to the input statistics (e.g. global proportions, trend and 
TI), assuming appropriate input statistics.  Selection of an inappropriate TI will produce inappropriate 
geological models and such errors will not be discovered by the proposed metrics.  Pyrcz and others (2006) 
discuss methods for inference of representative input statistics (one and two point and trends) and Pyrcz, 
Deutsch and Boisvert (2007) attempted to provide objective measures to select a TIs for use in MPS 
simulation; however, literature on this topic is sparse.  The use of MPS in geological modeling is in its 
infancy and it is likely that as the field matures more emphasis will be placed on practical issues such as TI 
selection, rather than the current focus on MPS algorithmic development.  It must be realized that the 
proposed metrics do not lend credibility to the choice of input statistics, the histogram, semivariogram, TI 
or trend model, rather they lend confirmation to the ability of the MPS algorithm to reproduce the desired 
statistics in the final geological models. 

Conclusions  

The place of the proposed metrics in the overall model confirmation process should be explicitly stated.  A 
visual inspection of the model is required and histogram and semivariogram reproduction are necessary 
checks.  The appropriate metrics (Table 1) should then be applied to assess the reproduction of higher order 
multiple point statistics.  In the face of significant deviation from the input statistics, adjustments to the 
implementation workflow and parameters should be made and contradiction between input statistics and 
conditioning should be addressed.  Finally, a more intensive assessment of the models credibility should be 
undertaken using accepted methods such as hold out analysis (Davis, 1987), performance measuring or 
history matching.  The proposed metrics are one step in model confirmation as they are intended to assess 
algorithmic performance rather than model performance.  Model performance should be tested with 
application specific transfer functions such as: recoverable reserves; flow simulation; effective permeability 
readings; connectivity of extremes; volume above a cutoff value. 

In the context of testing algorithm performance the proposed metrics provide necessary, but not sufficient, 
confirmation tools.  One important aspect of geological modeling is the diverse range of applications for 
each model created.  Every application demands a set of confirmation tests that assess the high order 
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statistical properties relevant to the models intended use.  The tools provided were created to test common 
uses of geological categorical models. 
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