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A Comparison of MPS Algorithms 

Steve Lyster 

Multiple-point statistics are high-order spatial moments that contain more information than traditional 
variograms or covariances. A number of algorithms have been published in recent years that use multiple-
point statistics. This paper compares several of them based on a variety of criteria and also compares the 
results to a variogram-based simulation method. 

Introduction 

In many cases where geostatistical models are used, the facies or rock types have significant control over 
the continuous variables of interest such as porosity, permeability, or grade. The spatial structure shown by 
facies often cannot be captured fully by variograms or covariances. Multiple-point statistics (MPS) may be 
used in these cases to reproduce structure such as curvilinear connectivity or complex facies relations. MPS 
is a term that is used to describe both spatial moments of order greater than two and methods that use these 
high-order moments. The decision of which MPS are important is a modeling choice; most MPS methods 
use training images (TIs) to derive MPS as data are rarely sampled densely enough to allow for direct 
inference. 

The decision of which MPS algorithm to use is also an important one in the modeling process. Resources 
for choosing between one algorithm and another are scarce. This paper will discuss the differences between 
several MPS algorithms and compare the results for two examples. There are a number of published MPS 
algorithms, and three will be considered here: MPS-GS, SNESIM, and FILTERSIM. These three 
algorithms all use TIs to infer the complex spatial moments used in simulation. 

MPS Algorithms 

The MPS-GS algorithm (Lyster and Deutsch, 2008) is an iterative method that uses a Gibbs sampler 
framework to converge an initial image to the desired target statistics using conditional distributions. The 
conditional distributions in a Gibbs sampler may be calculated in any way deemed acceptable, including 
using MPS; in the MPS-GS algorithm the indicators of multiple-point events (MPEs) are used in a kriging-
like framework: 
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where Ei
a is discrete MPH class a for MPE i. The MPEs are each discrete parts of a template of points, and 

are easier to infer from a TI than the full template. This is illustrated in Figure 1. The central 24-point 
template would be difficult to infer from a TI as there are 224 possible combinations (or classes); each 
individual four-point event has only 24=16 possible classes. 

The SNESIM algorithm (Strebelle, 2002, Liu, 2006) is the oldest and most well-developed MPS algorithm. 
SNESIM is a sequential simulation method that uses Bayes’ Law to directly infer the conditional 
probabilities of facies from a TI, using Equation 2. Figure 2 shows an example of Bayes’ Law as it is used 
in the SNESIM algorithm. The probabilities are stored in a search tree so the TI only needs to be scanned 
once. 
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The third MPS algorithm considered for the comparisons here is FILTERSIM (Zhang et al, 2006, Wu et al, 
2008). The FILTERSIM algorithm uses filters to group similar patterns of facies to reduce the dimension of 
the statistics. Each pattern is assigned a score for a number of filters and those patterns with similar scores 
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for all filters are considered to be sufficiently similar for grouping. These similar patterns are represented 
by prototypes; as simulation proceeds, the prototype that best matches the conditioning data is selected and 
then one pattern represented by this prototype is chosen and patched into place. An example of a number of 
patterns and their prototype is shown in Figure 3. 

MPS-GS has been developed at the CCG and the code is available to industrial sponsors. The SNESIM and 
FILTERSIM algorithms are freely available in the SGeMS software package. In addition to the MPS 
algorithms, SISIM (Deutsch and Journel, 1998) will be used for comparison to a more traditional 
geostatistical method. SISIM uses only the variogram of each facies as the model of spatial structure. 

 

 
 

Figure 1: An example of a 24-point MPS template broken into six discrete four-point MPEs. 
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Figure 2: An example of Bayes’ Law as used in SNESIM. 
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All of the realizations that are generated will be this size. Twenty realizations were generated using MPS-
GS, SNESIM, FILTERSIM, and SISIM. The times required for simulating 20 realizations for each 
algorithm are shown in Table 1. SISIM is the fastest algorithm, which is to be expected as only lower-order 
statistics are used for these realizations. Of the MPS algorithms MPS-GS is the fastest but this advantage 
changes with the number of realizations; MPS-GS calculates and stores the MPS in a file for later use. This 
calculation is slow but only needs to be done one. In this case with 20 realizations there is a significant 
speed advantage but for about 5 realizations MPS-GS and SNESIM would take the same amount of time. 
FILTERSIM is very slow compared to the other algorithms. 

 
Table 1: Time required to simulate 20 realizations of the fluvial channel example. 

 

Algorithm MPS 
Calculation Unconditional 

SISIM - 2:04 
MPS-GS 12:04 6:56 
SNESIM - 52:50 

FILTERSIM - 230:54 

Figures 5 through 8 show the results of unconditional simulation for the four algorithms. Each algorithm 
has two figures: one that shows an isometric view of one realization and 2D slices from the same 
realization, and one that shows the variogram and runs reproduction of the realizations compared to the 
reference TI values. Visually the SISIM realization is by far the worst, with no curvilinear structure or 
distinct flat tops on the channels. The MPS realizations all show these features, although the long-range 
connectivity is not always apparent when looking at 2D slices as the continuity is present in 3D. 

The MPS algorithms all reproduce the indicator variograms reasonably well considering that the 
variograms were not directly used in simulation. SISIM performed surprisingly poor by this measure. For 
the distributions of runs, the MPS realizations all encompass the TI reference within the 90 percent range of 
uncertainty for the realizations while the SISIM realizations show far too much short-range connectivity 
and not enough long-range. 

Overall, the MPS results for this example are too close to determine any significant difference between the 
algorithms. 

Stanford V Data Set 

The Stanford V data set (Mao and Journel, 1999) is a synthetic reservoir model that is useful for research 
purposes. This data set includes a TI and hard conditioning data; these two parts will be used to test the 
algorithms in this paper. The conditioning data also display a clear vertical trend that will be used to 
examine this aspect of the algorithms. Figure 9 shows an isometric view and 2D slices of the Stanford V TI. 
This TI has three facies and is 100x130x30 cells for a total of 390,000. The addition of crevasse splays as a 
third facies significantly increases the complexity of MPS as the order of MPS is KN is where K is the 
number of facies and N is the number of points. 

Table 2 shows the simulation time for three algorithms in four cases: unconditional, using hard 
conditioning data, using the vertical trend model, and using both hard data and the trend. The number of 
realizations was reduced to 10 to reduce the amount of time required. FILTERSIM was not used for this 
comparison as the program is too slow to be practical. The difference between MPS-GS and SNESIM is 
again quite pronounced for 10 realizations but the total time (including MPS calculation) would be about 
the same for 2-3 realizations. SISIM is once again several times faster than the MPS algorithms. The use of 
hard data has no effect on the time for simulation; using a trend as soft data increases simulation time 
slightly for the MPS algorithms. 
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Table 2: Time required to simulate 10 realizations of the Stanford V example. 

Algorithm MPS 
Calculation Unconditional Hard Data Trend Hard & 

Trend 
SISIM - 1:02 1:01 1:03 1:03 

MPS-GS 10:45 4:07 4:08 4:52 4:49 
SNESIM - 66:25 66:24 67:01 67:16 

 

Figures 10 through 12 show the results of unconditional simulation. As before, the first figure for each 
algorithm shows an isometric view and 2D slices from one realization and the second shows variogram and 
runs reproduction. The results here do differentiate the algorithms. MPS-GS shows too-high covariance 
(too-low variograms), and the short-range runs distributions are too low while the long-range runs 
connectivity is too high. SNESIM matches the TI variograms quite well but has too-high short-range runs 
distributions and too-low long-range runs. SISIM again does surprisingly poorly at variogram reproduction, 
particularly in the vertical direction. The runs show similar results as before, with the SISIM realizations 
having far too much short-range connectivity and not enough short-range. 

Discussion 

Visually the MPS algorithms produce realizations that are significantly better than the variogram-based 
SISIM program.  The time required for simulation favours MPS-GS over SNESIM for many realizations, 
but this advantage would be lessened with fewer realizations. FILTERSIM performs well from a statistical 
perspective but the algorithm takes too long to be practical in most cases. 

To assess the range of uncertainty in MPS simulation, three sources of uncertainty need to be considered: 
uncertainty in the TI, uncertainty between realizations, and parameter uncertainty. The parameter 
uncertainty was not considered in this case and general parameters were used for each algorithm. No TI 
uncertainty was considered; if this is deemed important than the speed advantage of MPS-GS would be 
very small or could even become a disadvantage if a large number of TIs were to be used with only 2-3 
realizations per TI. If there is significant certainty in the geology (and therefore the TI) then MPS-GS is 
significantly faster than the other MPS algorithms. 

All of the algorithms explicitly reproduce hard conditioning data. MPS-GS has some noticeable 
discontinuities near conditioning data when the data disagree with the TI; SNESIM shows discontinuities 
on average as data are more likely to form the edge of geo-bodies than the middle. SISIM has no such 
problems but no realistic-looking geology is evident in the results. 

Integration of soft data is vital for simulation methods to be considered robust. Seismic data or trends are 
available for many projects and should be incorporated into the models. All of the algorithms tested are 
capable of reproducing the trend on average; it is this average reproduction that is the goal of “soft” data 
integration. 

The SNESIM algorithm has seen significantly more development and has more features incorporated than 
other MPS methods. MPS-GS is a more recent development and could be improved in a number of ways 
and have additional functionality implemented. Overall the MPS methods offer improvements over more-
traditional SISIM and, when combined with geologic knowledge in the form of TIs, geologic layering or 
zone mapping, and fault modeling, can result in realizations that both honour the input statistics and look 
like real geology. 
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Figure 5: One realization created using MPS-GS. Top: isometric view; bottom: 2D slices. 
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Figure 6: One realization created using SNESIM. Top: isometric view; bottom: 2D slices. 
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Figure 7: One realization created using FILTERSIM. Top: isometric view; bottom: 2D slices. 
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Figure 8: One realization created using SISIM. Top: isometric view; bottom: 2D slices. 
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Figure 9: Stanford V TI. Top: isometric view; bottom: 2D slices. 
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Figure 10: One realization created using MPS-GS. Top: isometric view; bottom: 2D slices. 
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Figure 11: One realization created using SNESIM. Top: isometric view; bottom: 2D slices. 
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Figure 12: One realization created using SISIM. Top: isometric view; bottom: 2D slices. 

 


