A Comparison of MPS Algorithms

Steve Lyster

Multiple-point statistics are high-order spatial moments that contain more information than traditional
variograms or covariances. A number of algorithms have been published in recent years that use multiple-
point statistics. This paper compares several of them based on a variety of criteria and also compares the
results to a variogram-based simulation method.

Introduction

In many cases where geostatistical models are used, the facies or rock types have significant control over
the continuous variables of interest such as porosity, permeability, or grade. The spatial structure shown by
facies often cannot be captured fully by variograms or covariances. Multiple-point statistics (MPS) may be
used in these cases to reproduce structure such as curvilinear connectivity or complex facies relations. MPS
is a term that is used to describe both spatial moments of order greater than two and methods that use these
high-order moments. The decision of which MPS are important is a modeling choice; most MPS methods
use training images (TIs) to derive MPS as data are rarely sampled densely enough to allow for direct
inference.

The decision of which MPS algorithm to use is also an important one in the modeling process. Resources
for choosing between one algorithm and another are scarce. This paper will discuss the differences between
several MPS algorithms and compare the results for two examples. There are a number of published MPS
algorithms, and three will be considered here: MPS-GS, SNESIM, and FILTERSIM. These three
algorithms all use Tls to infer the complex spatial moments used in simulation.

MPS Algorithms

The MPS-GS algorithm (Lyster and Deutsch, 2008) is an iterative method that uses a Gibbs sampler
framework to converge an initial image to the desired target statistics using conditional distributions. The
conditional distributions in a Gibbs sampler may be calculated in any way deemed acceptable, including
using MPS; in the MPS-GS algorithm the indicators of multiple-point events (MPESs) are used in a kriging-

like framework:
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where Ei® is discrete MPH class a for MPE i. The MPEs are each discrete parts of a template of points, and
are easier to infer from a TI than the full template. This is illustrated in Figure 1. The central 24-point
template would be difficult to infer from a Tl as there are 2** possible combinations (or classes); each
individual four-point event has only 2*=16 possible classes.

The SNESIM algorithm (Strebelle, 2002, Liu, 2006) is the oldest and most well-developed MPS algorithm.
SNESIM is a sequential simulation method that uses Bayes’ Law to directly infer the conditional
probabilities of facies from a TI, using Equation 2. Figure 2 shows an example of Bayes’ Law as it is used
in the SNESIM algorithm. The probabilities are stored in a search tree so the TI only needs to be scanned
once.
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The third MPS algorithm considered for the comparisons here is FILTERSIM (Zhang et al, 2006, Wu et al,

2008). The FILTERSIM algorithm uses filters to group similar patterns of facies to reduce the dimension of
the statistics. Each pattern is assigned a score for a number of filters and those patterns with similar scores
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for all filters are considered to be sufficiently similar for grouping. These similar patterns are represented
by prototypes; as simulation proceeds, the prototype that best matches the conditioning data is selected and
then one pattern represented by this prototype is chosen and patched into place. An example of a number of
patterns and their prototype is shown in Figure 3.

MPS-GS has been developed at the CCG and the code is available to industrial sponsors. The SNESIM and
FILTERSIM algorithms are freely available in the SGeMS software package. In addition to the MPS
algorithms, SISIM (Deutsch and Journel, 1998) will be used for comparison to a more traditional
geostatistical method. SISIM uses only the variogram of each facies as the model of spatial structure.
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Figure 1: An example of a 24-point MPS template broken into six discrete four-point MPEs.
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Figure 2: An example of Bayes’ Law as used in SNESIM.
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Figure 3: Eight patterns that could be grouped together in FILTERSIM and the prototype representing

these patterns.

Comparison Criteria

The criteria that are used when comparing realizations created by using different methods will have an
impact on the results of the comparison. For this reason, a variety of criteria must be used. In this paper a
wide variety of criteria will be used:

Visual inspection: this is a good qualitative first-look test for the feasibility of realizations. In MPS
it is important that the results “look” like real geology.

Time required for simulation: an algorithm must be capable of producing results in a reasonable
amount of time on a typical desktop computer.

Variogram reproduction: the variogram is the simplest multivariate spatial statistic and is the
easiest to calculate and compare. The MPS algorithms should reproduce the variogram of the Tl
used.

Trend reproduction: if a trend exists, this secondary information should be incorporated into the
algorithm and properly represented.

MPH reproduction: the multiple-point histogram is a relatively simple MPS. The algorithms being
tested should match the MPH of the TI.

Runs reproduction: runs, or straight-line connectivity, should be reproduced by the algorithms.
This statistic does not capture curvilinear connectivity but is easy to calculate and visualize.

3D Fluvial Channels

Figure 4 shows a TI that will be used for the first comparison. The Tl is representative of a simple fluvial
channel system with only channel/non-channel facies. The TI is 100x100x50 cells for a total of 500,000.
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All of the realizations that are generated will be this size. Twenty realizations were generated using MPS-
GS, SNESIM, FILTERSIM, and SISIM. The times required for simulating 20 realizations for each
algorithm are shown in Table 1. SISIM is the fastest algorithm, which is to be expected as only lower-order
statistics are used for these realizations. Of the MPS algorithms MPS-GS is the fastest but this advantage
changes with the number of realizations; MPS-GS calculates and stores the MPS in a file for later use. This
calculation is slow but only needs to be done one. In this case with 20 realizations there is a significant
speed advantage but for about 5 realizations MPS-GS and SNESIM would take the same amount of time.
FILTERSIM is very slow compared to the other algorithms.

Table 1: Time required to simulate 20 realizations of the fluvial channel example.

Algorithm Ca||(\:/ILJI|D§ti0n Unconditional
SISIM - 2:04
MPS-GS 12:04 6:56
SNESIM - 52:50
FILTERSIM - 230:54

Figures 5 through 8 show the results of unconditional simulation for the four algorithms. Each algorithm
has two figures: one that shows an isometric view of one realization and 2D slices from the same
realization, and one that shows the variogram and runs reproduction of the realizations compared to the
reference TI values. Visually the SISIM realization is by far the worst, with no curvilinear structure or
distinct flat tops on the channels. The MPS realizations all show these features, although the long-range
connectivity is not always apparent when looking at 2D slices as the continuity is present in 3D.

The MPS algorithms all reproduce the indicator variograms reasonably well considering that the
variograms were not directly used in simulation. SISIM performed surprisingly poor by this measure. For
the distributions of runs, the MPS realizations all encompass the T| reference within the 90 percent range of
uncertainty for the realizations while the SISIM realizations show far too much short-range connectivity
and not enough long-range.

Overall, the MPS results for this example are too close to determine any significant difference between the
algorithms.

Stanford V Data Set

The Stanford V data set (Mao and Journel, 1999) is a synthetic reservoir model that is useful for research
purposes. This data set includes a Tl and hard conditioning data; these two parts will be used to test the
algorithms in this paper. The conditioning data also display a clear vertical trend that will be used to
examine this aspect of the algorithms. Figure 9 shows an isometric view and 2D slices of the Stanford V TI.
This TI has three facies and is 100x130x30 cells for a total of 390,000. The addition of crevasse splays as a
third facies significantly increases the complexity of MPS as the order of MPS is K" is where K is the
number of facies and N is the number of points.

Table 2 shows the simulation time for three algorithms in four cases: unconditional, using hard
conditioning data, using the vertical trend model, and using both hard data and the trend. The number of
realizations was reduced to 10 to reduce the amount of time required. FILTERSIM was not used for this
comparison as the program is too slow to be practical. The difference between MPS-GS and SNESIM is
again quite pronounced for 10 realizations but the total time (including MPS calculation) would be about
the same for 2-3 realizations. SISIM is once again several times faster than the MPS algorithms. The use of
hard data has no effect on the time for simulation; using a trend as soft data increases simulation time
slightly for the MPS algorithms.
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Table 2: Time required to simulate 10 realizations of the Stanford V example.
Algorithm MPS. Unconditional Hard Data Trend Hard &
Calculation Trend
SISIM - 1:02 1:01 1:03 1:03
MPS-GS 10:45 4:07 4:08 4:52 4:49
SNESIM - 66:25 66:24 67:01 67:16

Figures 10 through 12 show the results of unconditional simulation. As before, the first figure for each
algorithm shows an isometric view and 2D slices from one realization and the second shows variogram and
runs reproduction. The results here do differentiate the algorithms. MPS-GS shows too-high covariance
(too-low variograms), and the short-range runs distributions are too low while the long-range runs
connectivity is too high. SNESIM matches the TI variograms quite well but has too-high short-range runs
distributions and too-low long-range runs. SISIM again does surprisingly poorly at variogram reproduction,
particularly in the vertical direction. The runs show similar results as before, with the SISIM realizations
having far too much short-range connectivity and not enough short-range.

Discussion

Visually the MPS algorithms produce realizations that are significantly better than the variogram-based
SISIM program. The time required for simulation favours MPS-GS over SNESIM for many realizations,
but this advantage would be lessened with fewer realizations. FILTERSIM performs well from a statistical
perspective but the algorithm takes too long to be practical in most cases.

To assess the range of uncertainty in MPS simulation, three sources of uncertainty need to be considered:
uncertainty in the TI, uncertainty between realizations, and parameter uncertainty. The parameter
uncertainty was not considered in this case and general parameters were used for each algorithm. No TI
uncertainty was considered; if this is deemed important than the speed advantage of MPS-GS would be
very small or could even become a disadvantage if a large number of Tls were to be used with only 2-3
realizations per TI. If there is significant certainty in the geology (and therefore the TI) then MPS-GS is
significantly faster than the other MPS algorithms.

All of the algorithms explicitly reproduce hard conditioning data. MPS-GS has some noticeable
discontinuities near conditioning data when the data disagree with the TI; SNESIM shows discontinuities
on average as data are more likely to form the edge of geo-bodies than the middle. SISIM has no such
problems but no realistic-looking geology is evident in the results.

Integration of soft data is vital for simulation methods to be considered robust. Seismic data or trends are
available for many projects and should be incorporated into the models. All of the algorithms tested are
capable of reproducing the trend on average; it is this average reproduction that is the goal of “soft” data
integration.

The SNESIM algorithm has seen significantly more development and has more features incorporated than
other MPS methods. MPS-GS is a more recent development and could be improved in a number of ways
and have additional functionality implemented. Overall the MPS methods offer improvements over more-
traditional SISIM and, when combined with geologic knowledge in the form of Tls, geologic layering or
zone mapping, and fault modeling, can result in realizations that both honour the input statistics and look
like real geology.

References

Deutsch, C.V. and Journel, A.G. (1998) GSLIB: Geostatistical Software Library and User’s Guide, 2™ Ed. Oxford University Press,
New York, 369 p.

Liu, Y. (2006) Using the Snesim Program for Multiple-Point Statistical Simulation. Computers & Geosciences, Vol. 32, No. 10, Dec.
2006, pp 1544-1563.

Lyster, S. and Deutsch, C.V. (2008) MPS Simulation in a Gibbs Sampler Algorithm. 8" International Geostatistics Congress, 10 p.

113-5



Mao, S. and Journel, A. (1999) Generation of a reference petrophysical/seismic data set: the Stanford V reservoir. Stanford Centre for
Reservoir Forecasting, No. 12.

Strebelle, S. (2002) Conditional Simulation of Complex Geological Structures Using Multiple-Point Statistics. Mathematical Geology,
Vol. 34, No. 1, Jan. 2002, pp 1-21.

Wu, J., Boucher, A., and Zhang, T. (2008) A SGeMS code for pattern simulation of continuous and categorical variables:
FILTERSIM. Computers & Geosciences, doi: 10.1016/j.cage0.2007.08.008

Zhang, T., Switzer, P., and Journel, A. (2006) Filter-Based Classification of Training Image Patterns for Spatial Simulation.
Mathematical Geology, VVol. 28, No. 1, Jan. 2006, pp 63-80.

XY Slice 36

1) - 1un00g y

XY Slice 12
N ¥ -
m I Charmel Icmm - I Cramns!
£ E £
: : : \_/\

Eaoround
nom a0l an
o (0 Emt mm

Eazt oo o East

XZ Stice 25

I I o
- e
Charmel "’ Channel r ‘r ' 1 Chanre!
v ; .
2 ]

€
‘- o .'
B W - = w1 w® -

YZ Slice 25 ¥Z Slice 75
- s
' 1' Charmel "' Channel "' Channel
£ 1 £ ' £
2 Ed ‘i
‘ i — v | -
i - ' - ', . aom w ¥ v

Twn i Eact i et mm

Figure 4: Fluvial channel TI. Top: isometric view; bottom: 2D slices.
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Figure 5: One realization created using MPS-GS. Top: isometric view; bottom:
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Figure 6: One realization created using SNESIM. Top: isometric view; bottom: 2D slices.
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Figure 7: One realization created using FILTERSIM. Top: isometric view; bottom: 2D slices.
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Figure 8: One realization created using SISIM. Top: isometric view; bottom: 2D slices.
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Figure 9: Stanford V TI. Top: isometric view; bottom: 2D slices.
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Figure 10: One realization created using MPS-GS. Top: isometric view; bottom: 2D slices.
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Figure 11: One realization created using SNESIM. Top: isometric view; bottom: 2D slices.
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Figure 12: One realization created using SISIM. Top:

isometric view; bottom: 2D slices.



