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Modeling Scalar Variables on Unstructured Grids 

John G. Manchuk and Clayton V. Deutsch 
 

An outstanding issue in geostatistics research is the extension of modeling algorithms to unstructured 
grids, which are being used for reservoir flow analysis.  Geostatistical algorithms are limited to regular 
grids; currently, models are built on a high resolution and upscaled to the flow grid.  Several issues can be 
identified with this method.  In various fields of computational mechanics and reliability analysis, where 
unstructured grids have been used for some time, accounting for uncertainty is becoming increasingly 
important.  Methods are being developed that treat material properties as stochastic variables, a more 
prevalent one being the Karhunen-Loeve expansion.  This series expansion technique represents a 
stochastic process as a series of orthogonal eigenvalues and eigenfunctions.  It can be formulated 
independent of any mesh or grid (meshfree) and can be used to generate realizations of a stochastic 
process on unstructured grids intended for reservoir analysis.  This preliminary paper on the subject 
covers the Karhunen-Loeve expansion, its meshfree formulation, and application to unstructured grids in 
geostatistics. 

Introduction 

Unstructured grids designed and used by reservoir analysts pose an interesting challenge for geostatistical 
modeling.  The main use of the grids is to characterise flow of reservoir fluids with simulation to identify 
the potential of some recovery technique, be it traditional or enhanced.  Therefore, grids are designed to 
conform to major reservoir structure such as horizons and faults, to capture a certain level of heterogeneity, 
and to obtain good accuracy of flow simulation results.  Flow simulation requires these grids be 
characterized with reservoir properties, which is the purpose of geostatistics.  However, geostatistical 
modeling algorithms are not designed with the same goals.  They are intended to reproduce spatial 
heterogeneity and various statistics including the distribution and covariance.  The targeted grids are pixel 
based and the algorithms cannot be used directly to characterize unstructured grids. 

A very common and powerful geostatistical algorithm is sequential Gaussian simulation or SGS (Deutsch, 
2002).  It is based on the generation of Gaussian fields conditional to known information and with a 
specified covariance.  Variables are treated as random point processes and realizations are generated over 
pixel based regular grids.  These regular grids are typically of a higher resolution than unstructured grids.  
An upscaling procedure is used to assign property values to unstructured grid elements based on the SGS 
models (Farmer, 2002).  The majority of references on upscaling target permeability due to its complexity 
and importance to flow; however, for any variable upscaling is essentially a numerical integration 
technique. 

Therefore, an algorithm is required that retains the characteristics of SGS that has made it robust for 
quantification of uncertainty and that is applicable to unstructured grids.  A similar problem has been 
encountered in mathematics with the description of physical processes that are controlled by partial 
differential equations.  Examples include structural analysis, thermal convection, and fluid flow through 
porous media.  All processes take place through materials such as a concrete beam, steel plate, or reservoir 
corresponding to the previous examples.  For particular cases of these, it is more appropriate to treat the 
material properties as random – the distribution of grains in a concrete beam, thickness of a steel plate, or 
permeability throughout a reservoir can be considered uncertain in formulating the associated physical 
process.  The stochastic finite element method (SFEM) has been devised for many of these types of 
problems (Ghanem and Dham, 1998; Eierman, Ernst, and Ullmann, 2007; Ghanem and Spanos, 2003).  
Several methods of generating random fields in SFEM exist; however, the most applicable that shares 
properties of SGS is to represent the random process as a series expansion.  Expansion consists of a set of 
coefficients and functions that characterize a random process.  A classical technique known as the 
Karhunen-Loeve (KL) expansion (Huang, Quek, and Phoon, 2001) produces a series that is bi-orthogonal: 
both the coefficients and functions are orthogonal.  Therefore it is the most optimal representation of a 
random process (Hernandez, 1995). 

KL expansion can generate fields with a given covariance function and is not restricted to any grid system 
making it well suited to geostatistical modeling of unstructured grids.  In fact, the expansion problem can 
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be solved via meshfree methods: a relatively recent numerical scheme developed for computational 
mechanics (Nayroles, Touzot, and Villon, 1992; Liu and Gu, 2005).  The remainder of this paper will 
discuss the issues with implementing SGS on unstructured grids.  Also, a description of the KL expansion 
and its properties will be given along with the meshfree formulation of the expansion.  The final section 
will describe how stochastic models can be generated for unstructured grids. 

Background 

SGS has several advantages for uncertainty quantification including the generation of models that reflect 
the heterogeneity throughout a reservoir and reproduction of the distribution and spatial correlation of 
sample data.  The algorithm is stochastic in that several non-deterministic models can be generated, often 
referred to as a set of realizations.  For reservoir decision making using flow simulation, realizations are 
processed to provide a distribution of performance measures.  Unfortunately, SGS cannot be directly 
applied to unstructured grids.  Instead, the algorithm is used to generate a set of realizations on a high 
resolution regular grid, which is upscaled to an unstructured grid.  Several problems with this method exist: 

1. Choosing the modeling scale, i.e. a representative elementary volume (REV) (Bear, 1972), for a 
regular grid is a non-trivial task.  Rocks are heterogeneous at all scales.  Reservoirs may contain 
large homogeneous regions that are overrepresented by the chosen scale while other areas may be 
much more heterogeneous than the chosen scale can represent.  Choosing the finest scale would 
likely result in intractable models. 

2. Regular grids will never exactly cover an unstructured grid (Figure 1).  There will be an error term 
in the upscaling procedure used.  This is especially hazardous for upscaling permeability, which 
typically involves solving the flow equations over the regular grid and integrating pressure and 
flux over the unstructured elements (Durlofsky, 2003). 

3. Unstructured elements may represent a level of heterogeneity at a scale finer than the chosen 
regular grid scale.  In this case, upscaling may assign a constant property value to all unstructured 
elements contained within a regular grid cell (Figure 2). 

4. A wide variety of upscaling techniques for permeability exist, but their reliability is limited 
(Farmer, 2002).  Both local and global methods exist, but results are dependent on boundary 
conditions, which must be chosen carefully to arrive at appropriate upscaled permeability. 

5. For multiphase problems, upscaling of facies, hence rock curves, is not fully developed.  It is 
commonly done with a majority vote average, which likely excludes important information from 
the reservoir (Zhang, Pickup, and Christie, 2005). 

 
Figure 1: poor coverage of unstructured 

elements by regular grid 

 
Figure 2: Unstructured grid with higher 

resolution than the regular grid 

 

SGS is not restricted to regular grids and there is one possible extension for its direct application 
to unstructured grids.   Instead of choosing a high resolution regular grid or REV, which omits 
problems 1 – 3, the upscaling of variables could be done dynamically (Manchuk and Deutsch, 
2006).  For an unstructured element, a number of points would be simulated, not necessarily on a 
regular grid, and upscaled.  This numerical integration may be done according to some a priori 
error that is deemed acceptable, and integration points would be added until a lower error is 
achieved.  Some issues still exist with this method including 4 and 5: 

6. All integration points must be maintained during the generation of each realization to ensure the 
covariance is correct between them. 
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7. For a particular unstructured element, points cannot be added and simulated until enough are 
available for integration to achieve the specified error.  Simulating points in clusters will introduce 
artefacts and poor variogram reproduction at ranges beyond the extents of the unstructured grid 
elements.  Avoiding this issue requires all integration points be known a priori so they may be 
visited in a random sequence much like the existing SGS algorithms. 

8. Depending on how integration points are chosen, traditional methods of upscaling permeability 
may not be applicable.  Points will not form a regular grid and unstructured grid flow solvers will 
be required. 

To avoid gridding issues, 1 – 3, 6 and 7, a technique for generating stochastic models independent of a grid 
system and other simulated points would be successful.  The KL expansion shares the advantages of SGS 
and can be formulated with this latest condition. 

Karhunen-Loeve Expansion 

KL expansion is a series expansion technique that represents a stochastic process with an infinite series of 
deterministic functions (Hernandez, 1995).  Other expansion techniques are possible, but the KL expansion 
gives an orthogonal series and hence an optimal representation of the stochastic process.  Several 
assumptions are made about the stochastic process before defining the KL expansion, and all coincide with 
geostatistical applications.  Assume the stochastic process ω(x) of spatial coordinate x is bounded by the 
domain Ω, has mean ( )ω x and finite variance 2[ ( ) ( )]E ω ω−x x .  Then the stochastic process can be 
represented by a series expansion (1) where λk and fk(x) are the eigenvalues and eigenfunctions of the 
covariance function, C(x1, x2), of the stochastic process, and U is a series of random variables. 

 
1

( ) ( ) ( )k k k
k

U fω ω λ
∞

=

= +∑x x x  (1) 

An additional assumption is the covariance function is bounded, symmetric, and positive definite – this is 
the case with covariance models defined in geostatistics.  Determination of the eigenvalues and 
eigenfunctions is an integral equation problem (2). 

 1 2 2 2 1( , ) ( ) ( )k k kC f d fλ
Ω

=∫ x x x x x  (2) 

This is the Fredholm integral equation of the second kind (Atkinson, 1997).  It is second kind because the 
function fk(x) to be determined is both inside and exterior to the integrand.  Several methods exist to solve 
(2) and only certain covariance functions permit an analytical solution.  A numerical method for 
multidimensional domains will be discussed in the following section.  The solution results in an orthogonal 
set of eigenfunctions (3) and the random variables defined by (4) have zero mean and are uncorrelated (5).  
δij is the Kroneker delta function defined by (6).  The covariance function is reconstructed by Mercer’s 
theorem (7) (Hernandez, 1995). 
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Numerically, it is not practical to consider an infinite sum.  Instead the series is truncated to a finite number 
of terms.  This introduces a source of error, but it has been shown that the truncated expansion is mean 
square optimal (Hernandez, 1995; Ghanem and Spanos, 2003).  For the special case where the stochastic 
process ω(x) is Gaussian, the vector U is a series of standard Gaussian values. 

The preceeding description of the KL expansion is given in several other works including Hernandez 
(1995), Huang et al (2001), Ghanem and Spanos (2003), Phoon et al (20021,2, 2005), and Rahman and Xu 
(2005).  Most references also suggest methods for solving (2); however, the more applicable method for 
multidimensional domains and any covariance kernel is the meshfree approach (Rahman and Xu, 2005; Liu 
and Gu, 2005). 

Meshfree KL Expansion 

Meshfree numerical simulation techniques are a recent development and Liu and Gu (2005) discuss several 
variations.  Although the majority of references on meshfree methods are aimed at solving engineering 
problems described by partial differential equations, a formulation for the KL expansion has been explained 
by Rahman and Xu (2005).  Unlike finite element methods (FEM) or finite volume methods (FVM) that 
involve discrete element or volumes, meshfree methods distribute a set of control points throughout the 
domain of interest based on some accuracy requirement or preprocessing.  Each point has a local domain of 
support and there is no restriction on the interaction of multiple local domains (Figure 3).  This is in 
contrast to FEM/FVM where elements do not intersect.  Another notable difference is with interpolation of 
a variable within the domain.  In FEM, interpolation is based on nodal values of an element containing the 
point, whereas in meshfree methods, interpolation is based on a set of control points in a local support 
domain of the point of interest.  This technique has been termed a moving domain based interpolation by 
Liu and Gu (2005).  This technique is very similar to kriging.  Kriging interpolates the mean of a random 
variable based on surrounding conditioning data, which form the support domain. 

 
Figure 3: Circular support domains of points distributed through a domain of interest 

Variables are interpolated using shape functions that depend on control points within a support domain.  
For the KL expansion, the eigenfunctions are interpolated at an arbitrary point in space based on (8), where 
x is the point location, m is the number of basis functions, pi(x) is a basis function, and g(x) is a vector of 
coefficients to be determined.  Shape functions to be developed are referred to as moving least squares 
(MLS) shape functions (Lancaster and Salkausdas, 1981).  The coefficients are determined by minimizing 
the weighted squared difference, J, between ( )k if x and ˆ ( )kf x given by (9) where xi is the ith control point, 
W(x-xi) is a weight function that is non-zero in the support domain of x, and N is the total number of 
control points.  Note that the weight function beyond the local support domain of x is zero, so all N points 
in the sum are not necessary, but make notation more straightforward. 
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Setting the partial derivative of J with respect to g to zero yields the following system of equations (10), 
where A(x) is defined by (11), B(x) by (12), and F is a vector of the values of fk(x) at control points. 

 ( ) ( ) ( )=A x g x B x F  (10) 

 
1

( ) ( ) ( ) ( )
N

T
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W
=
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 [ ]1 1( ) ( ) ( ) ( ) ( )N NW W=B x x p x x p x  (12) 

Solving for g(x) and substituted back into (8) gives (13), which contains the definition of the MLS shape 
functions, Φ(x).  The ith MLS shape function is defined by (14), where Bi(x) is the ith column of B(x), or 
Wi(x)p(xi). 

 1ˆ ( ) ( ) ( ) ( ) ( )T T
kf

−= =x p x A x B x F Φ x F  (13) 

 1( ) ( ) ( ) ( )T
i iφ −=x p x A x B x  (14) 

The representation of fk(x) by a series of shape function can be substituted into the integral equation (2) 
which gives (15).  This continuous operator equation can be formulated as a discrete one using Galerkin’s 
method whereby the residual error defined by (16) is made orthogonal to the shape functions (17). 
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Combining (16) with (17) yields (18), which is a generalized eigenvalue problem that can be formulated as 
(19) where C is defined by (20), V is an orthogonal matrix of eigenvectors, Λ is a diagonal matrix of 
eigenvalues, and D is defined by (21). 
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f C d d dφ φ λ φ φ
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Ω Ω
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 ( ) ( ) , 1,...,ij k i jD d i j Nλ φ φ
Ω

= =∫ x x x  (21) 

The solution to (19) provides the values at the meshfree control points.  To obtain the kth eigenfunction for 
any x, the kth column of V is assigned to F in (13), i.e. Fi = Vik, i = 1,…,N.  Eigenvalues and eigenfunctions 
are substituted into (1) to generate the stochastic process with a covariance defined by C(x1,x2). 

In formulating (19), the most computationally demanding component is evaluating the integrals in (20) and 
(21).  For a three dimensional problem, each ij element of V is a 6 dimensional integration and for D a 3 
dimensional integration.  Some simplifications are possible assuming the weight functions are zero beyond 
the local support domain of a point x.  Dij will be zero for φi(x) and φj(x) that have an empty intersection 
(Figure 4).  Also, Vij will be zero when the local support domains of φi(x1) and φj(x2) are separated by more 
than the correlation length of C(x1,x2) (Figure 5). 
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Figure 4: Reason for sparsity of D 

 
Figure 5: Reason for sparsity in C 

 

Generating realizations 

Like SGS, the formulation of a stochastic process via the KL expansion can be used to generate 
realizations.  There is no dependence on an underlying grid however, which makes the later more attractive 
despite its upfront computational expense.  Utilizing the KL expansion to generate a realization for an 
unstructured grid involves the following steps, assuming that a covariance function is already known for a 
variable of interest: 

1. Choose basis functions and a weight function for the meshfree method.  An example of basis 
functions is polynomials, much like for specifying a drift for SGS.  Using 6 basis functions in two 
dimensions, 2 2( ) [1 ]Tp x y x xy y=x .  Choosing a weight function should be done such 
that the weight is positive within the domain of support, Ωs, of a point x, monotonically decreases 
away from x to zero at the boundary, ∂Ωs, of Ωs, and is smooth on ∂Ωs (Liu and Gu, 2005). 

2. Discretize the domain containing the unstructured grid into a set of N control points.  Points do not 
necessarily have to coincide with the unstructured grid discretization as the desired accuracy 
required to reproduce statistics of the stochastic process may be possible with far fewer.  Using the 
same discretization would likely require different numerical methods to store and solve (19).  
Because unstructured grids are often designed to give higher accuracy where needed, it may be 
advantageous to use the same grid nodes for the meshfree KL expansion and obtain higher 
accuracy for the eigenfunctions in the same areas (Figure 6) 

3. Build and solve (19) and choose a finite number, L, to truncate the series in (1).  For a sufficiently 
large N, L may be increased while L < N until acceptable covariance reproduction is achieved 
using (7). 

4. Sample the stochastic process for any x within the unstructured grid by substituting (13) into (1), 
which gives (22).  For a Gaussian field, U=[U1,…,UN]  is a standard Gaussian vector. 
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5. If necessary, condition the result by kriging, which involves sampling the process at locations of 
conditioning data. 
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Figure 6: Unstructured grid and associated meshfree control points 

In the 4th step, (22) can be written as a matrix equation involving all N eigenfunctions (23).  Although this 
seems numerically demanding, Λ is diagonal simplifying its involvement and depending on the domain of 
support for x, many entries in Φ(x) may be zero. 

 
1
2( ) ( ) ( )T Tω ω= +x x U Λ V Φ x  (23) 

An advantage of (22) or (23) over SGS is realized when generating the stochastic process at multiple 
locations, X = [x1,…,xn].  There is no need to follow a random path to ensure covariance reproduction and 
there is no need to save previously simulated values.  The concept of numerical integration over 
unstructured grid elements is more applicable and issues 1 – 3, 6, and 7 discussed in the background section 
can be omitted.  Even though upscaling of permeability remains an issue, numerical integration of scalar 
variables such as porosity is possible.  A number of quadrature rules are available (Kythe and 
Schaferkotter, 2004) and can be applied to unstructured grid elements.  For a particular element Ωe and a 
linear averaging scalar variable, the integral is given by (24). 
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N
e T

k k k
k
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Ω = +∑∫ x Φ x F x  (24) 

 

Conclusion 

The Karhunen Loeve expansion is an efficient method of storing the information contained in a stochastic 
process.  It is being used more extensively in computational mechanics problems to deal with materials 
having random property distributions.  Geostatistics involves the same idea where uncertainty is quantified 
by treating variables as random; however, it has been challenging to extending geostatistical tools to 
unstructured grids.  This can be overcome by utilizing the KL expansion to generate realizations of 
reservoir properties.  Its application to continuous scalar variables has been discussed and future 
developments involve facies or categorical variables and permeability or tensor variables.  The expansion 
shares characteristics of sequential Gaussian simulation, including straightforward generation of Gaussian 
fields and reproduction of the covariance.  It has an advantage in that a stochastic process can be sampled at 
any spatial location without explicitly ensuring the covariance between other samples is correct, i.e. 
previously simulated values are not necessary.  This allows for a straightforward integration of scalar 
reservoir properties to unstructured grid elements. 
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