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Direct Upscaling of Variograms and Cross Variograms for Scale 
Consistent Geomodeling 

Olena Babak and Oy Leuangthong 

Integration of data from multiple sources and/or multiple scales is a common, yet challenging aspect of 
geostatistical modeling.  Common approaches to data integration are based on a cokriging framework, 
that often assumes the input variogram/covariance models of coregionalization are at a scale consistent 
with the data and the model grid.  The scaling laws for the variogram have often been applied to ensure 
consistency of the input variogram model; however, these laws are based on a strict assumption of 
invariance of the variogram shape. We propose a direct upscaling approach to the variogram that is 
theoretically derived.  A numerical integration approach to determine the upscaled variogram is presented 
with an example showing the difference between this theoretical proxy approach and the scaling laws 
approach. The results show that the shape of the variogram does indeed change with scale. Further, the 
extension to cross variograms is straightforward and an upscaled consistent linear model of 
coregionalization is presented. 
 
Introduction 
 
Data from well cores are among the finest scale of information available for geostatistical inference, and as 
a result it is often considered to be point scale data with an infinitesimally small volume support.  Data 
from log traces represent an incremental increase in volume support relative to core data; however, these 
are also considered to be relatively fine scale information.  Seismic surveys, if available, generally cover 
much larger lateral extents with shallow depth.  These different data at different support sizes must then be 
reconciled to some intermediate modeling volume that is determined based on the resolution required and 
the computational resources available.  Integration of these data from various sources and at different 
volume supports is a longstanding challenge in geostatistical modeling (Kupfersberger et al 1998). 
 
In most cases, the smallest size that the fine scale model can be is limited by computer storage and 
professional time.  Consequently, even the finest scale model is larger than the data support.  In the context 
of estimation, several geostatistical tools exist to facilitate data integration.  One set of tools considers that 
secondary data inform a trend about the primary data; these techniques include external drift and locally 
varying mean (Marechal 1984; Deutsch and Journel 1998).  Another group of methods uses the secondary 
data as additional conditioning information for estimation of the primary variable; these methods include 
collocated cokriging (Xu et al 1992; Almeida and Journel 1994), Bayesian updating (Doyen 1996; Ren et al 
2007) and block cokriging (Goovaerts 1997).  With the exception of block cokriging, most methods assume 
the primary and all other secondary information are at a consistent scale. 
 
Consistency of scale in the input data and the intended grid can easily be an oversight.  In the context of 
geostatistical simulation, the model is constructed based on a point-support simulation, the input data is 
considered at a point support and the input variogram corresponds to this same data.  This is an acceptably 
consistent scale model at the point support (Journel and Kyriakidis 2004).  However, the model is 
commonly required at an intermediate block scale and high resolution fine scale models are practically 
infeasible; populating block simulated values is desired. 
 
Direct sequential simulation (DSS) is one possible approach to simulate at a block scale; however, issues 
with histogram inference and reproduction (Bourgault 1997; Caers 2000; Oz et al 2003) have limited many 
applications to univariate modeling.  Soares (2001) proposed a direct cosimulation approach to handle 
multivariate problems based on a collocated cokriging approach.  If the correlation coefficient between 
primary and secondary data are properly scaled to account for any scale differentials between the data, then 
this approach can and will account for different supports. 
 
An alternative to DSS is to consider a ‘point’ simulation at a block-consistent grid specification, using 
block averaged data and the block-scale variogram.  Once again, the premise for this approach is to ensure 
consistency in the input data and the required model.  Data compositing is a common practice to upscale 
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available hard data. Using this composited data, we can calculate the corresponding composite-support 
variogram; however, compositing reduces the number of available samples for reliable variogram 
inference.  In such cases, modelers may calculate and fit the variogram using the original support data.  
This variogram model must then be upscaled for consistency with the model grid and composited data. 
 
Scaling of the variogram model to reflect different volume supports is not new.  The scaling laws 
associated with the variogram are well known (Journel and Huijbregts 1978; Frykman and Deutsch 1999, 
2002).  They predict how the variogram changes from one volume to another, with specific laws linked to 
the nugget effect, range and the variance contributions of each constituent structure.  A number of 
simplifying assumptions are made to determine these scaling laws, including volume averaging is 
performed for non-overlapping volumes, the underlying variable averages linearly, and the shape of the 
variogram does not change with scale.  In particular, the latter assumption of shape invariance of the 
variogram is a strong and often unrealistic assumption. 
 
This paper proposes to directly upscale the variogram through a numerical integration approach.  This 
numerical approach is used as a proxy to a theoretically developed expression to analytically upscale the 
variogram.  A review of the variogram scaling laws is provided.  The proposed approach to explicitly 
upscale the variogram model is then described.  To facilitate data integration, the extension to cross 
variograms is straightforward; this is presented in a section that considers the linear model of 
coregionalization at the required block support.  A small example is then used to compare the results of the 
scaling laws to the direct upscaling approach. 
 
 Regularization 
Very seldom, in practice, point data )(uz  is available. Most often, the data at hand is defined on a certain 

support )(uVV =  centered on a point ,u  that is, ).(uVz  The value of )(uVz  is the average of the 
point data )(uz  in the volume V , that is,  

.)(1)( wwu dz
V

z
V

V ∫=      (1) 

The value )(uVz  is called the regularization of the point variable )(wz  over the volume V (Journel and 
Huijbregts 1978).  If the point-regionalized variable )(wz  is a realization of a second-order stationary 
random function )(wZ , then the regularization of the point random function )(wZ  over the volume V  
is also a second-order stationary random function given by: 
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Variogram Scaling Laws 
 
The variogram model is linked to the volume support of the data. To represent the volume support that we 
are interested in, the variogram models need necessarily be scaled. To represent the change in the 
variogram with the change in the volumetric scale the variogram scaling laws are commonly applied 
(Frykman and Deutsch 1999, 2002). A short description of these laws follows.  
 
Let us consider a semivariogram model )(hvγ  at arbitrary scale v (v usually the small core scale): 

,)()(
1

0 ∑
=

Γ+=
k

i

i
v

i
vvv CC hhγ     (3) 

where 0
vC  is the nugget effect, k is the number of nested variogram structures used to fit the experimental 

variogram of the data, ,,,1, kiC i
v …=  is the variance contribution of each nested structure, and 

,,,1),( kii
v …=Γ h  are individual nested variogram structures with sill of one. Each nested structure is 

given by analytical function (e.g., spherical, exponential, etc.).  
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Then a semivariogram model )(hVγ  at a larger volume V is given by  
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where 0
VC  is the nugget effect, ,,,1, kiC i

V …=  is the variance contribution of each nested structure, 

and ,,,1),( kii
V …=Γ h  are individual nested variogram structures (all for the scale V). And the 

following is assumed: 
1. The shape of each individual nested structure (i.e., exponential, spherical) remains invariant when 

the scale changes. The variogram range of each rested structure increases as the size of the volume 
V increases. In particular, if i

va  is the range of ,,,1),( kii
v …=Γ h  for the small scale, then the 

range i
Va  of ,,,1),( kii

V …=Γ h  for the large scale is given by 
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 where || v  and ||V  relate to the size of the volume in a particular direction. 

2. The variance contributions ,i
vC  of each nested structure ,,,1),( kii

V …=Γ h  change from the 
small scale to the large scale as follows 
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where ),( VViΓ  and ),( vviΓ  are the average variogram or “gamma-bar” values. In particular, 

),( VViΓ  represents the mean variogram )(hiΓ when one extremity of the vector h describes 
the domain V and the other extremity of this vector independently describes the same domain. The 
values of gamma-bar’s are usually estimated numerically by volume discretization, that is, 
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where n is the number of regular spaced points discretizing the volume V. 
3. The variance of the purely random component, called nugget effect, is inversely related to the 

volume, that is, 
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It should be noted that as scale increases, the range of correlation increases, and the variogram sill 
decreases due to high and low values being averaged out. Moreover, it is worth noting also that the scaling 
laws are established under the following additional assumptions (Journel and Huijbregts 1978): 

1. The averaging is performed with non-overlapping volumes. 
2. The variables scale in a linear manner. 
In general, the assumptions underlying scaling laws appear to be very strong and limiting. In particular, 

the assumption of no shape change for the variogram nested structures is very unrealistic. It has been 
observed in many examples that the shape of the experimental variograms at volume V is different from the 
ones predicted from scaling laws especially for short lag distances (e.g., Frykman and Deutsch 2002). 
Therefore, a direct approach for exact calculation of the upscaled variograms is of great practical interest.  
 
Direct Variogram Upscaling 
If )(wZ  is assumed to be a second-order stationary random function with mean m, covariance )(hC  and 
variogram )(2 hγ . Then )(uVZ  given by 

∫=
V

V dZ
V
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is a second-order stationary random function representing the upscaled point random function )(wZ  or 
the regularization of the point random function )(wZ  over the volume V . 
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Then, the mean ))(( uVZE , variance ))(( uVZVar  semivariogram )(hVγ  and covariance )(hVC  of 

)(uVZ  for the scale V can be calculated based on the mean m, covariance )(hC  and semivariogram 

)(hγ  of )(uZ  for the point scale as follows (Journel and Huijbregts, 1978): 
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where hV  denote the support V translated from V by the vector h; ),( hVVγ  represents the average of the 
point semivariogram )(hγ  when one extremity of the vector h describes the support V and the other 

extremity independently describes the translated support hV , that is, 
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),( hVVC  represents the average of covariance )(hC  and is given by 
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Note that if the semivariogram )(hγ  of the point-regularized random variable is made up of several nested 
structures, that is, 
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where 0C  is the nugget effect, k is the number of nested variogram structures, ,,,1, kiC i …=  is the 

variance contribution of each nested structure, and ,,,1),( kii …=hγ  are individual nested variogram 
structures given by analytical function (e.g., spherical, exponential, etc.) with a sill of one. Then, the 
average of the point semivariogram )(hγ  can be calculated as 
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And, thus, the semivariogram )(hVγ  for the scale V is given by 
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It is worth noting that semivariogram )(hVγ  does not contain any nugget effect. The nugget effect 
vanishes when upscaling to a larger volume V, it does matter how large the nugget effect was in the point 
scale variogram.  Similarly, it can be shown that in this case the covariance for the scale V is given by 
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Since the variance )0(C  at the point scale for semivariogram )(hγ  is given by 
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then it follows from Equation (15) that covariance for the scale V can be calculated as 
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Linear Model of Coregionalization (LMC) at a Block Support 
In the case when multiple interdependent random variables are available, the spatial relationship between 
them must be described in a feasible manner. Let us now derive a linear model of coregionalization for N 
stationary regularizations },,{ 1

V
N

V ZZ …  of the point random functions },,{ 1 NZZ …  over the volume 

V  based on a linear model of coregionalization for },,{ 1 NZZ …  at a point support. 
 
Let us consider N stationary point random functions },,{ 1 NZZ … . Further let us assume that each point 

support random function ,,,1, NiZi …=  can be expressed as a linear combination of K independent 

zero mean second-order stationary random functions ,,,1, KkYk …=  each with covariance function 

)(hkC  as follows 
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The random functions ,,,1, KkYk …=  are assumed to be unknown. If we group the random functions 

,,,1, KkYk …=  according to distinct direct covariances )(hkC , then Equation (18) can be rewritten: 
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where 1+L  is the number of groups with distinct direct covariances; and ln  is the number of random 

functions with the same covariance ),(hlC  .,,0 Ll …=   
 
Then direct and cross covariances between two random variables )(uiZ  and )( hu +jZ , 

,,,1, Nji …=  can be calculated as 
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If we set  
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then it follows from Equation (20): 
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Therefore to determine the direct and cross covariances between any two random variables )(uiZ  and 

)( hu +jZ , ,,,1, Nji …=  we need only to determine covariances ),(hlC  ,,,0 Ll …=  and the 2)1( PL +  

coefficients l
ijb . Because a joint matrix of covariance functions ,,,1,),( NjiCij …=h  must be 

positive semi-definite; this requires the covariance models ),(hlC  ,,,0 Ll …=  and L+1 matrices of l
ijb  

coefficients to be positive semi-definite. In practice the covariance models ),(hlC  ,,,0 Ll …=  are 
chosen to be known positive semi-definite models such as Spherical, Exponential, Gaussian, etc. Model 
(22) is the liner model of coregionalization at a point support.  Moreover, since 
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it follows from Equation (19) 
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Therefore the direct and cross covariances between two regularization random variables )(uV
iZ  and 

)( hu +V
jZ , ,,,1, Nji …=  are given by 
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Note that ),( hVVC l  represents the average of the point covariance )(hlC  when one extremity of the 
vector h describes the support V and the other extremity independently describes the translated (by vector 
h) support hV .  If we set  
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then it follows from Equation (25): 
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Therefore to determine the direct and cross covariances between any two random variables )(uV
iZ  and 

)( hu +V
jZ , ,,,1, Nji …=  defined at the block support of size V we need only to determine average 

covariances ),( hVVC l , ,,,0 Ll …=  and the 2)1( PL +  coefficients l
ijb . Because a joint matrix of 

covariance functions ,,,1,),( NjiCij …=h  must be positive semi-definite; this requires the 

covariance models ),(hlC  ,,,0 Ll …=  and L+1 matrices of l
ijb  coefficients to be positive semi-definite. 

Note, however, if the covariance models ),(hlC  ,,,0 Ll …=  are chosen to be known positive semi-
definite models such as Spherical, Exponential, Gaussian, etc., then the average covariances calculated 
based on this models will be also positive-definite (this is a know property of integration). Model (27) is the 
liner model of coregionalization at a block support.  It is interesting to note that if  
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is a feasible linear model of coregionalization at a point support then  
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is a feasible linear model of coregionalization at a block support and vise versa. This establishes an 
interesting link between point and block linear model of coregionalization. 
 
 
Calculating Average Covariance ),( hVVC  and Avarage Variogram ),( hVVγ  

Now the only issue remains is to calculate the values of the average covariances ),( hVVC  and average 

variogram values ),( hVVγ . Unfortunately, except for simplistic cases (see Journel and Huijbregts 1978), 
there is no analytical solution for average covariances and semivariograms for any of the commonly used 
variogram models, that is, spherical, exponential and Gaussian. If you recall the same is the case for 
gamma-bar values. Interestingly enough, this fact in itself shows that the assumption of invariance of 
variogram shape to the scale change is unrealistic. 

Therefore, to calculate the average covariances ),( hVVC , giving the covariance )(hVC  for the 

scale V, numerical discretization of the volumes V  and hV  is used. Specifically, the average covariances 
are calculated as 
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The average semivariograms are approximated by 

,))((11))((11),(
1 1
∑∑∫∫
= =

+−≈+−=
n

i

n

j
ji

V V nn
dd

VV
VV huuxwhxwh γγγ  (31) 

then the semivariogram )(hVγ  for the scale V is calculated as 
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One of the existing programs of the extended GSLIB group called gammabar was modified in order to 
implement calculation of the semivariograms and covariances for the scale V for different lag distances h in 
any desired direction. The parameter file for the updated program called gammabar_new is given below. 
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Example: Scaling Laws vs. Direct Variogram Upscaling 
This section is aimed at accentuating the difference between upscaled variograms obtained using scalling 
laws and the ones obtained from theory via direct variogram upscaling approach.  
 
Let us consider a point second-order stationary random function )(wZ  with the following 3D isotropic 
semivariogram model characterizing its spatial continuity 

);(3.0)(7.0)( 305 hhh == += aa ExpSphγ  

and calculate the semivariogram for the regularization )(wVZ  of the point random function )(wZ  over 
the volume V  for different volume sizes V. In particular, we consider three different block sizes for 
volume V. These are cubes with length 2m, 5m, and 10m.  
 
Figure 1 shows comparison of the upscaled variograms obtained using scaling laws and direct variogram 
upscaling approach for the three considered block sizes used for averaging. Figure 1 also shows point scale 
variogram. 
 
It can be clearly noted from Figure 1 that the shape of the variogram changes when changing support of 
data. With increase in the block size the shape of the block support variograms becomes more 
pronouncedly Gaussian for small lag distances, see Figure 2. Moreover, the departure between upscaled 
variogram predicted using scaling laws and theoretical upscaled variograms obtained via direct upscaling 
approach also increase with increase in the modeling scale (block volume). Therefore, it is apparent that in 
order to correctly predict the variogram at larger scale using a small scale variogram model a direct 
upscaling approach should be used; not the scaling laws. 
 
 
Conclusions 
A fundamental assumption underlying the scaling laws for the variogram is that of shape invariance.  The 
theoretically derived approach presented here makes no such assumption.  In fact, the examples show that 
there is a change in the shape of the variogram, specifically a smooth Gaussian structure at short scale can 
be expected with upscaling to a larger volume.  This is consistent with the effects of block averaging. 
 
A practical approach to determine directly upscaled variograms is based on a numerical integration that 
approximates the analytical integral of these variogram models.  As with average variogram or average 
covariance calculations, the approximation is robust given sufficient discretization.  A prototype program 
gammabar_new is developed for this purpose. 
 
Furthermore, this direct upscaling approach is easily extended to cross-variograms; this facilitates the 
development of a scale consistent linear model of coregionalization which is required for consistent 
modeling at the block scale. 
 
This approach presents numerous exciting future research prospects. One area for further development is a 
method to downscale the block scale variogram, such that fine scale models can be constructed.  This is the 
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same objective as the work of Kupfersberger et al (1998), but the goal here will be to avoid use of the 
scaling laws.  Another possible area of research will be to develop a linear model of coregionalization that 
is consistent at all scales, which could then be used to truly integrate data at different supports without any 
prior compositing required. 
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Figure 1. Comparison of the upscaled variograms obtained using scaling laws (dashed lines) and direct 
variogram upscaling approach (solid lines) for the block support of 2m, 5m and 10m. 

 
Figure 2. Comparison of the upscaled variograms obtained using scaling laws (dashed lines) and direct 
variogram upscaling approach (solid lines) for the block support of 2m and 5m for lag distances up to 10m. 

 


