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One well known artifact of the probability field (p-field) simulation algorithm is a too large covariance 
near conditioning data.  Previously, we derived a theoretical correction to the covariance bias.  The cor-
rection was implemented via an LU-based simulation and was limited to small grids.  A mixture model lo-
cal correction for the p-field covariance bias is proposed here.  The mixture model correction can be used 
on any sized grid. 

Introduction 

Probability field (p-field) simulation was proposed by Srivastava [5] in 1992 and Froidevaux [2] in 1993.  
P-field simulation is performed in 2 steps: (1) the local distributions of uncertainty (conditional cumulative 
distribution functions or ccdfs) are established at each location, and (2) simulated values are drawn from 
the ccdfs with correlated uniform random numbers.  The random numbers must be correlated, or the simu-
lated values will be too random.  An appealing aspect of p-field simulation is that the ccdfs can be based on 
a variety of data sources including soft data and expert judgment. 

Probability field simulation is attractive because it dissociates the construction of the ccdfs and the Monte 
Carlo sampling from them; however, there are two well know artifacts of probability field (p-field) simula-
tion (Pyrcz and Deutsch, 2000 [4]): (1) the local conditioning data data almost always appear as local mi-
nima and maxima and (2) the covariance is not reproduced in the presence of conditioning data.  The first 
artifact will not be covered in this paper. 

Journel proved that p-field simulation correctly reproduces the input variogram in the unconditional case 
[3].  This is not very practical when attempting to generate conditional simulations.  In the presence of con-
ditioning data, the covariance field becomes non-stationary.  The covariance values close to conditioning 
data are quite different compared to far away from conditioning data. 

The non-stationary covariance depends on the data configuration and the variogram used for the simulation.  
The non-stationary covariance field is correctly reproduced in sequential Gaussian simulation because pre-
viously simulated nodes are used in the estimation of other nodes.  Usually, the correlated field of random 
numbers used in p-field simulation is generated using a stationary covariance matrix.  This gives condition-
al p-field simulated values the incorrect covariance.  

In a previous paper [5] we derived a correction for the p-field covariance bias problem.  The correction was 
calculated as a function of the conditioning data under a multivariate Gaussian framework.  The correction 
algorithm was applied in an LU-based simulation program and allowed small fields to be simulated uncon-
ditionally accounting for the conditioning data.  By using this corrected unconditional simulation, the out-
put conditional p-field simulation had the correct covariance. However, the LU-based approach limited the 
size of the field that could be considered. 

In this paper we will present an approximate local correction for p-field.  Although it is not as theoretically 
valid compared to the previous correction, it allows larger fields to be simulated.   

Covariance between Simulated Values in a Multivariate Gaussian Setting 

Consider simulating N locations with n conditioning data.  The covariance matrix between the data is de-
fined using the modeled covariance function.  The n x n covariance matrix between the data is: 
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where C(ui–uj) is the covariance function for the distance between data locations i and j.  Consider the co-
variance matrix between the n data and the N locations being simulated: 
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where C(ui–u(j)) is the covariance function for the distance between the data location i and the location j 
being simulated.  Consider the covariance matrix between the N locations being simulated: 
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where C(u(i)–u(j)) is the covariance function between the locations being estimated.  By combining Equa-
tions (1), (2), and (3) we can obtain an expression for the conditional covariance matrix of the N points 
being simulated given the n data: 
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It is interesting to note that the term 1
11 12C C−  is the solution the of the N simple kriging systems: 

 [ ]1
11 12C C λ− =  (5) 

Substitute Equation (5) into Equation (4): 
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Next, substitute the kriging equations into Equation (6). Recall the simple kriging system of equations: 
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After the substitution, the simplified expression for the conditional covariance between locations i and j is: 
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The conditional covariance between two simulated nodes simplifies as: 
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This means that the conditional covariance between 2 points being simulated in the presence of condition-
ing data is exactly known.  It is a function of the covariance between the data values and of the covariance 
between the data and locations being estimated.  Note that when there are no conditioning data for the loca-
tions i and j, the correct covariance is the input covariance. 

Covariance between Simulated Values using P-Field 

Now that we have an expression for the conditional covariance between locations in a multivariate Gaus-
sian setting, we need to determine the covariance between simulated locations in p-field.  For the p-field 
proof we will only consider two locations, i and j, within a multivariate Gaussian setting. 

Estimating the local ccdfs is the first step for p-field simulation.  Simple kriging can be used to estimate the 
mean and variance at each location given the n conditioning data.  The mean and variance completely de-
fine the ccdf in a multivariate Gaussian setting.  The ccdfs at the 2 locations are: 
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Using the ccdfs from Equation (10), the p-field simulated values at each location are: 
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where Ys(i) and Ys(j) are unconditionally simulated values at locations i and j respectively.  The uncondition-
ally simulated values have a specific correlation structure and are normally distributed with a mean of 0 and 
a variance of 1.  The covariance between Ycs(i) and Ycs(j) is: 
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The expected values in step 4 of Equation (12) cancel out because mi and mj are constants. The covariance 
between 2 locations in p-field simulation is a function of the standard deviation at each location and the 
covariance of the random field between the 2 locations. We need to correct the covariance of the random 
field so that the output covariance from p-field is correct. 

Non-Stationary Covariance Correction 

We now know the covariance between locations i and j from p-field, Equation (12), and the correct cova-
riance between the 2 locations, Equation (9).  Recall: 

 ( ) ( ){ } ( ) ( ){ }, ,pfield i jcs i cs j s i s jCov Y Y Cov Y Yσ σ=   
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We can define a corrected covariance for the unconditional simulation that will provide the correct cova-
riance in the output p-field simulation.  Set the p-field corrected covariance to the conditional covariance 
from Equation (9): 
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rearrange and substitute the p-field covariance: 
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rearrange to get a corrected covariance for the unconditional simulation that will give p-field simulation the 
correct non-stationary covariance field: 
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The corrected covariance for the unconditional simulation will give the p-field conditional simulations the 
correct spatial structure.  Next, we present method to generate an unconditional simulation with a non-
stationary covariance matrix. 

Mixture Model Correction 

The large field covariance correction is based on a mixture model.  The mixture model aims to approximate 
the location correction from Equation (13).  One component of the mixture is a standard unconditional si-
mulation and the second component is a random field.  By combining these two components, we can ap-
proximate the theoretical local p-field covariance correction. 

Let 1Y  be a Gaussian unconditional simulation with a covariance function ( ) ( )1C γ= −h h .  Then let 2Y  be 

a random Gaussian field that is (0,1)N  and has a covariance function ( ) 0 0C = ∀ >h h .  The combina-

tion of the 1Y  and 2Y  will be the corrected unconditional simulation for use with p-field.  The combination 

of the 1Y  and 2Y  is done with Equation (14): 

 ( ) ( ) ( ) ( ) ( )3 1 21Y Y f Y f= − +u u u u u  (14) 

Where f(u) is a weight applied to the random field and 1-f(u) is the weight applied to the correlated uncon-
ditional simulation.  We know from the theoretical correction that in areas with little to no conditioning 
data, no correction is needed. In areas with dense conditioning data a large covariance correction is re-
quired.  For this reason, f(u) is calculated as a function of the kriging variance calculated from the condi-
tioning data.  Let f(u) take the following form (Equation (15): 

 ( ) ( )( )1 0Yf a
ω

σ= uu i  (15) 

Where  ω and a0 are calibration parameters to control the correction.  There is no method to directly calcu-
late either ω or a0. Several calibration runs will be required to get correct values for ω or a0 that result in 
the correct spatial structure in the resulting conditioned model.   
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Large Scale Unconditional Simulation 

The p-field simulation program (pfsim) from GSLIB was modified to perform the mixture model correc-
tion.  The modified program is called pfsim_cc.for (pfsim unconditional corrected covariance).  The 
parameters for the program are: 

 
Line  START OF PARAMETERS: 
  1   1                    -1=continuous(cdf), 0=categorical(pdf) 
  2   1                    -1=indicator ccdfs, 0=Gaussian (mean,var) 
  3   3                    -   number thresholds/categories 
  4   0.5  1.0  2.5        -   thresholds / categories 
  5   cluster.dat          -Within-class details: file with global dist 
  6   3   0                -   ivr,  iwt 
  7   0.0    30.0          -   minimum and maximum Z value 
  8   1   1.0              -   lower tail: option, parameter 
  9   1   1.0              -   middle    : option, parameter 
 10   1   2.0              -   upper tail: option, parameter 
 11   kt3d.out             -file with input conditional distributions 
 12   1   2                -  columns for mean, var, or ccdf values 
 13   -1.0e21  1.0e21      -  trimming limits 
 14   sgsim.out            -file with input p-field realizations 
 15   1                    -  column number in p-field file 
 16   0                    -  0=Gaussian, 1=uniform [0,1] 
 17   pfsim.out            -file for output realizations 
 18   1                    -number of realizations 
 19   50   50   1          -nx, ny, nz 
 20   1.0 1.0              -omega and alpha 
 

The parameters on Lines 1-19 are the same parameters as the pfsim program; refer to [1] for details.  The 
calibration parameters are specified on Line 20.  Currently, the program only allows for Gaussian condi-
tional distributions.  The variance component of the distribution is used for the local correction. 

Example 

The example shows that the covariance artifact from p-field can be corrected with the mixture model ap-
proach.  The effects that the calibration parameters have on the resulting spatial structure are shown and the 
results from the traditional p-field approach are compared to the results from the calibrated mixture model  
This example uses the cluster.dat data file from the GSLIB book [1]. We check the variogram repro-
duction for sequential Gaussian simulation, p-field simulation with the stationary covariance, and p-field 
with the mixture model correction.  In addition, we need to run a pre-processing step to get values for ω 
and a0 that give good variogram reproduction.  Figure 1 shows the normal score data from cluster.dat.  
Figure 2 shows the isotropic variogram: 

 ( ) ( )100.2 0.8 asphγ == + ⋅h h  

Figure 3 and Figure 4 show the ccdf’s for p-field.  The ccdfs are calculated from simple kriging of the nor-
mal scores.  Several calibration runs had to be made to get values for ω and a0.  The calibrations runs were 
for a large range of ω and a0 values.  ω ranged from 0.0 up to 10 and a0 ranged from 0.0 to 1.8.  Figure 5 to 
Figure 8 show 4 different cases from the calibration.  The calibration parameters have a large impact on the 
variogram of the conditioned simulation.  The combination of ω=4 and a0=1.8 was chosen from the results 
of the calibration runs. 

The sequential Gaussian simulation results are shown in Figure 9 and Figure 10.  The variogram reproduc-
tion is acceptable within normal fluctuations.  Figure 11 and Figure 12 show the p-field simulation results 
using an uncorrected unconditional covariance field.  The variograms from the simulation are too conti-
nuos.  In other words the conditional simulation is too smooth.  The mixture model corrected p-field results 
show a marked improvement for variogram reproduction; Figure 13 and Figure 14.  The shape of the vario-
gram is not perfect, but it is closer to the input model than the traditional p-field simulation.  The corrected 
variogram has a Gaussian-like shape near a lag distance of zero. 
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Conclusions 

Like all geostatistical methods, p-field algorithms have their place.  There are 2 artifacts that practitioners 
must be aware of when using p-field: (1) data appear as local minima and maxima, and (2) the covariance 
is too smooth in the presence of conditioning data.  Previously, a theoretical non-stationary covariance cor-
rection was derived for p-field simulation.  This correction worked very well but was limited due to the LU 
implementation.  Large grids (more than 10,000 cells) could not be simulated.  The mixture model ap-
proach presented here allows a non-stationary correction to be applied to large simulation models.  This 
allows for p-field models to be constructed without the known covariance bias.  Although this correction is 
not exact, it should produce better results than traditional p-field with its covariance bias. 
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Figure 1:  Data from cluster.dat. 

 
Figure 2:  Isotropic variogram. 
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Figure 3:  Simple kriging estimate. 

 
Figure 4:  Simple kriging estimation variance. 

 

 
Figure 5:  Variogram reproduction with  

ω=1.0 and a0=0.4. 

 
Figure 6:  Variogram reproduction with  

ω=1.0 and a0=1.6. 
 

 
Figure 7:  Variogram reproduction with  

ω=6.0 and a0=0.4. 

 
Figure 8:  Variogram reproduction with  

ω=6.0 and a0=1.6. 
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Figure 9:  SGSIM Realization. 

 
Figure 10:  SGSIM variogram reproduction. 

 

 

 
Figure 11:  Uncorrected PFSIM realization. 

 
Figure 12:  Uncorrected PFSIM variogram 
reproduction. 

 

 
Figure 13:  Corrected PFSIM realization. 

 
Figure 14:  Mixture model corrected PFSIM 
variogram reproduction 

 


