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The Place of Probability Combination Schemes 

Sahyun Hong and Clayton V. Deutsch 

Data integration requires the multivariate distribution among the considered data sources.  Probability 
combination schemes including permanence of ratios, the tau model, the nu model and the lamda model 
have received some attention recently.  These approaches involve the combination of each calibrated 
probability conditioned to individual data source in order to approximate the joint probability, which is 
termed probability combination method.  In many cases, direct density estimation is preferred; however 
probability combination approach is more useful in certain cases.  Also, probability combination methods 
are applicable for information integration (different from data integration) to get consensus prediction.  
Probability combination model is overviewed in this paper.  The non-convexity characteristic is shown with 
numerical example. 

Introduction 

Multivariate modeling in geostatistics is common.  Various data sources with varying degrees of quality are 
often available and even a single source such as geophysical provides different attributes.  Geostatistical 
data integration requires the building of a probability model of properties in terms of optimal use of these 
all data sources. 

Diverse data includes local drilling samples, geophysical measurements, conceptual geology and analogue 
data.  Well drilling data and geophysical data are numeric data with different spatial coverage.  Conceptual 
geology and analogue data are often captured and quantified by training images (TIs).  These sources of 
information are aimed at characterizing the variable of primary interest despite of varying degree of spatial 
extent, quality, support and correlation.  The purpose of data integration is to build joint probability 
distribution conditioned to all these diverse data simultaneously.  Thus, the built probabilistic model must 
account for redundancy among these data. 

There are two ways to construct joint probability of interest: indirect estimation method is termed 
probability combination schemes (PCS) and direct density estimation method.  Direct density estimation is 
to construct multivariate probability directly: multivariate pdf is directly built and the conditional 
probability of interest is extracted from the multivariate distribution.  Indirect probability combination 
method is to approximate the target joint probability by combining univariate probability.  Various names 
of PCS model exist depending on how to measure and calibrate the data redundancy.  CCG proposed the 
lamda model as one of probability combination scheme last year and proposed a direct density estimation 
algorithm this year (see paper-101/102 in this volume).  Direct estimation method is mathematically robust 
and transparent in terms of accuracy and explicitly quantifying data redundancy.  Thus this method should 
be dominant and a standard in data integration study.  However, indirect method is sometimes necessary 
and chosen as an alternative to direct estimation method in case of integrating non-numeric data and 
qualitative information.  Besides, PCS is used to aggregate information that is integrated probability at 
higher level than data source integration level. 

This paper overviews probability combination approach and the place of PCS will be discussed in the light 
of both data integration and information integration level. 

Data Integration by Probability Combination Models 

Probability combination scheme (PCS) has been developed independently in many research areas in order 
to find a consensus probability using several single source derived probabilities.  Main principle of PCS is 
to approximate the target joint probability through linking the individual probability that is already 
computed using each datum.  For the nominal expression, let us set data sources to be considered as 
(D1,…,Dm) and the event of primary variable as A.  Now, the joint probability is approximated by PCS 
model generically denoted as Φ[⋅], 
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Equation (1) is derived by Bayes law.  Event A of primary variable can be interpreted as anything 
depending on the purpose of study.  For example, event A can be occurrence of the moving target in 
intelligent navigation and data sources (D1,…,Dm) can be images from thermal camera, radar camera and so 
on.  In geologic applications, the event A can be interpreted as being either ‘ore’ or ‘waste’ in mining 
engineering, and either ‘net facies’ or ‘non-net facies’ in petroleum engineering.  The joint probability of 
interest is a probability of event A given all data, and it is estimated at every visited cell location u, u∈ A.  
p(A) is a global probability of event A.  Univariate conditional probabilities p(A|Di), i=1,…,m are obtained 
from calibrating of each datum Di with respect to event A.  Figure-1 illustrates schematic diagram of 
probability combination method. 

 
Figure-1: Schematic illustration of probability combination scheme. 

Function Φ[⋅] is a combination model and it has various names depending on how to measure data 
redundancy among data sources (D1,…,Dm).  The simple model is to assume conditional independence 
(assuming no redundancy) among data sources, which is called permanence of ratios (PR-model).  PR-
model assumes that data sources are independent each other conditioned to geologic event A.  Tau-model is 
an advanced model and it mitigates independence assumption by imposing exponential weights (weights 
are denoted as τ) on each calibrated probability.  Lamda model is another name of tau-model but it 
quantifies data redundancy through calibrating the approximated probability and the hard data at well 
locations.  Equation (1) now can be expressed as one term such as, 
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The joint probability is approximated by each calibrated term and exponential redundancy weights 
expressed as λi∈[0,1], i=1,…,m.  Weights λi, i=1,…,m control the influence of each calibrated probability.  
They are associated with inherent data redundancy; however, the role of exponential weights is not clearly 
understood.  The combination model converges to PR if λi, i=1,…,m are set as 1.  Several weights selection 
methods to measure redundancy have been proposed, but it is not easy to get optimal weights since data 
redundancy is related with data (D1,…,Dm) and event A at the same time.  In PCS approach, data 
redundancy is implicitly accounted for in terms of alternative criterion and/or objective function (see paper-
105 in report 9).  This makes PCS less attractive because the meaning of calibrated weights is not 
transparent and untraceable.  When finding the redundancy weights another constraint should be considered.  
Basic probability requirements are followings: 
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When inserting the approximated term instead of original p(A|D1,…,Dm) then 
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Above relations are marginality constraints that should be met.  Exponential weights, thus, must be 
calibrated based on both the certain optimal measure of redundancy and marginal constraints.  Direct 
density estimation is an alternative to PCS in the light of its mathematical rigorousness and transparency: 
the method builds multivariate density constrained with marginal conditions and avoids the complicated 
step of weight selection procedure.  The details about direct density estimation are not discussed in this 
paper.  Its theoretical background and applications are demonstrated in other papers (see paper-101/102 in 
this volume).  But it should be noted that direct density estimation method explicitly account for data 
redundancy between data sources and meets the marginality property.   

Despite of direct estimation method’s advantages, probability combination scheme is sometimes to be 
considered as data integration technique.  For example, geologic interpretation and modern analogue could 
be interpreted by expert geologist and those qualitative data will be quantified as facies probability.  
Deterministic model by expert system is critical and it is often enough for geologic modeling.  Even if this 
probability assignment does not show variations at small scale it could provide important large scale 
heterogeneity.     

Non-Convexity of Data Integration 

The probability combination scheme is the approximation way of the joint probability of interest when the 
joint modeling of data sources is not applicable.  Let us see the approximation equation (1) again and let us 
assume conditional independence (λi=1,i=1,…,m) then, 
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The term p(D1) ×⋅⋅⋅×p(Dm)/p(D1,…,Dm) in eq. (1) is summarized as C(D1,…,Dm) that is independent of 
event A only function of data sources (D1,…,Dm).  p(A) is a priori probability or global proportion of event 
A.  The below table demonstrates one example of non-convexity of the integrated probability.  Binary 
facies case (A=1 or 0) with two data source denoted as (D1,D2) is prepared. 

p(A=1) p(A=1|D1) p(A=1|D2) 

0.6 0.7 0.88 

Probabilities of A=1 conditioned to D1, and D2 are both higher than the global probability 0.6.  Equation (5) 
is replaced by the above numeric value then, 

1 2
1 2

( 1 | , ) 0.7 0.88 ( 1 | , ) 1.0267
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p A D D C p A D D C=
≈ × × ⇒ = = ×  

1 2
1 2

( 0 | , ) 0.3 0.12 ( 0 | , ) 0.09
0.4 0.4 0.4

p A D D C p A D D C=
≈ × × ⇒ = = ×  

Term C is regardless of event A (=1 or 0) so it is canceled by normalizing p(A=1|D1,D2)+p(A=0| D1,D2)=1.  
Integrated probability p(A=1| D1,D2) is, thus, calculated as 0.919 which is much higher than p(A=1), 
p(A=1|D1) and p(A=1|D2).   
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p(A=1) p(A=1|D1) p(A=1|D2) 
Esimated 

p(A=1|D1,D2) 

0.6 0.7 0.88 0.919 

The reverse case is also shown in the below.  p(A|D1) and p(A|D2) are below global probability, which 
results in much lower integrated probability. 

p(A=1) p(A=1|D1) p(A=1|D2) 
Estimated 

p(A=1|D1,D2) 

0.6 0.4 0.55 0.352 

This property is called a non-convexity of data integration.  Data integration amplifies the impact of data 
sources if they represent possibility in the same direction: higher probability or lower probability than 
global probability.  This non-convexity is very natural.  In equation (5), if p(A|Di) is larger than p(A) then 
p(A|Di)/p(A) gets larger than 1, which makes p(A|D1,…,Dm) to be much larger.  In consideration of 
weighted PCS model, this non-convexity is preserved as well.  Weighted combination model is shown in 
the following,   
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The term p(D1)λ1×p(D2)λ2/p(D1,D2) is summarized as C(D1,D2,λ1,λ2).  We assumed redundancy weights λ1 
and λ2 are only depending on different data source regardless of event A.  Above simple numeric example 
is used again.  Redundancy weights λ1 and λ2 are arbitrarily chosen as 0.7 and 0.8.  High weights being 
close to 1 means data source D1 and D2 are less redundant. 
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Integrated probability p(A=1|D1,D2) with redundancy weights is calculated as 0.879 which is still higher 
than p(A=1), p(A=1|D1), and it is close to p(A=1|D2). 

p(A=1) p(A=1|D1) p(A=1|D2) 
Estimated p(A=1|D1,D2)  

with λ1=0.7 and λ2=0.8 

0.6 0.7 0.88 0.879 

The degree of non-convexity is reduced when comparing with no redundancy weighting model.  Figure-2 
demonstrates the non-convexity of the integrated probability.  X axis indicates the term p(A|Di)/p(A) which 
is within [0,∞].  X-axis value being less than 1 represents data source Di predict lower probability than 
global probability p(A).  This makes much lower integrated probability p(A|D1,…,Dm).  When adopting 
exponential weights, the effect of non-convexity is reduced.  The curve (weighted model with λ=0.3 and 
0.7) goes below the straight line (PR-model) if x-axis value is greater than 1, and the curve goes above the 
straight line if x-axis value is between 0 and 1.  This arithmetic behavior of PCS model can be interpreted 
such that no redundant data Di, i=1,…,m are totally new information (no information overlapping) so the 
integrated probability will be far away from the used several estimators.  No redundant data should be 
combined by PR-model maximizing the non-convexity.  If data sources are somewhat redundant those are 
to be interpreted as being partially new informative.  Thus, weighted PCS model that reduces non-
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convexity should be considered.  Integrated probability will not be far away from the used estimators, 
p(A|Di), i=1,…,m. 

 
Figure-2:  Non-convexity property of the integrated probability 

Information Integration by PCS 

Another potential application of probability combination scheme is to aggregate the information that is 
obtained from the data integration process.  Probability combination at this level should be differentiated 
from PCS at data integration level.  Data integration is referred to as assimilating the available data such as 
well data, seismic data, TI and others.  Integrated results are to be various and different based on the choice 
of integration methodology.  Different integrated results sometimes need to be considered together as 
integration procedure often requires the subjective user-input parameters and algorithm settings.  
Evaluating of multiple results will ensure the production of the most satisfactory possible.  Pooling 
different integration results, conditioned to the same data sources, involves procedure with the goal of 
combining results to find consensus estimates.  This is termed information integration.  Figure-3 illustrates 
data integration and information integration.   

 
Figure-3:  Data integration and information integration 
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Data integration step builds the joint probability given all available data by either indirect or direct 
estimation method.  Direct density estimation is preferred when data redundancy can be explicitly 
quantified, and probability combination method is adopted when data redundancy is quantified only by 
implicit manner.  Non-convexity is a significant characteristic in this stage.  Various integrated predictions 
are resulted from different choice of integration model or parameters with the same data.  Information 
integration aggregates those decisions to provide consensus predictions.  The consensus must be found by 
weighted linear averaging: convexity is a desirable property in information integration, 
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Weights αi∈[0,1], i=1,…,N might be selected in terms of integration model reliability, accuracy or other 
criterion.  Linear averaging lets consensus probability exist between the integrated results. 

Discussion 

CCG proposed two approaches to assimilate multiple data sources in geostatistical reservoir modeling: 
indirect probability combination scheme (PCS) and direct density estimation.  Both methods are aiming at 
construct probabilistic model conditioned to all data sources; however, direct density estimation accounts 
for data redundancy in explicit manner and PCS infer optimal redundancy weights via a certain calibration 
algorithm.  Direct estimation is preferred in most cases but PCS is more appropriate when the data to be 
integrated is non-numeric and qualitative.  Non-convexity is that the integrated probability exists outside 
individual data source derived probability.  This is a very natural phenomenon by probability integration 
equation.  Weighted combination models maintain non-convexity but the degree of non-convexity is 
controlled by exponential weights. 

Another application of PCS is to pool integrated results, which is information integration.  Data integration 
procedure made a full use of data sources with accounting for data redundancy and non-convexity.  
Information integration is to aggregate those multiple integrated results in order to obtain consensus 
predictions.  Convexity is ensured by linear averaging in information integration. 
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