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Short Note on Dynamic Data Integration in Characterizing 
Permeability and Flow Fields  

Amir H. Hosseini and Clayton V. Deutsch 

Integration of data from different data sources is very common when characterizing permeability and flow 
fields in hydrogeology and reservoir engineering applications. In this short note, incremental value of 
additional static and dynamic data in understanding the permeability field and pressure response is 
investigated. In a steady-state mode, unconditional and conditional permeability realizations are flow 
simulated and compared to the reference permeability field and associated flow field. Conditioning of the 
permeability realizations to the pressure head data is performed by Sequential Self-Calibration (SSC) 
approach and a post-processing step. The results of this study show that (1) as expected, conditioning to 
both static and dynamic data improves the estimation of reference permeability and flow fields; (2) the first 
few pressure measurements that are incorporated into the model significantly reduce the uncertainty in the 
permeability field; and (3) a post-processing can be quite useful to remove unrepresentative realizations 
after conditioning to dynamic data. This short note is presented for a groundwater application. However, 
all the conclusions equally apply to the case of single phase flow in reservoir engineering applications. 

Synthetic aquifer and multiple scenarios  

A two-dimensional 1000 m × 700 m synthetic aquifer with no-
flow boundary conditions on the west and east boundaries and 
constant pressure boundary conditions on the north and south 
boundaries is considered (Figure 1). The constant pressure 
head boundary conditions have been set to 5 m and 2 m at 
north and south boundaries, respectively. Incremental addition 
of information is investigated in the context of sixteen 
scenarios. An anisotropic reference permeability field with a 
Gaussian distribution is considered. The reference 
permeability and the associated pressure head response are 
shown in Figure 2. Permeability and head values were 
sampled from the reference field at 15 locations in total. Table 
1 shows the number of the sampled data and their data types 
that have been used in different scenarios. Each set of three 
wells (numbered uniquely in Figure 1) are added to the data 
set from one scenario to the next. Depending on the scenario 
considered, the initial permeability fields are conditioned to 
the static data (permeability measurements) by Sequential 
Gaussian Simulation (Deutsch and Journel 1998) and/or 
conditioned to the dynamic data (pressure head measurements) 
by Sequential Self-Calibration (Gomez-Hernandez et al. 
1997).  

Post-processing for SSC  

Sequential Self-Calibration approach uses a gradient based optimization algorithm and may well be prone 
to get stuck in local minima, particularly when there is a decent number of conditioning dynamic data. To 
investigate the significance of this problem, 100 realizations are conditioned to all permeability and head 
data (scenario K+H_5), using SSC. In implementation of SSC, the maximum number of outer iterations, 
the minimum tolerance, the minimum difference of objective function in two consecutive iterations and the 
maximum number of times that the difference of objective function in two consecutive iterations is smaller 
than the specified value are set to 25, 0.05, 10-2 and 5, respectively.  

Figure-1: Modeling domain and the 
location map of the wells with sampled 
data. Each set of three wells (numbered 
uniquely) are added to the data set from 
one scenario to the next.     
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Figure-2: Reference permeability and reference head field and sampling points 

 

Table-1: Number of data and different data types for different scenarios  

The weights used in construction of the objective function in the SSC algorithm are equal to the 
measurement error associated with pressure heads. The objective function is defined by:  
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where, obs
ih , cal

ih and iW are observed and calculated pressure heads, and the associated optimization 
weights, respectively. Nobs is the number of observation locations. The weights can be written in terms of 
standard deviation of observation error iσ , that is: 
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In this study, error variance associated with all observations iσ is set equal to 0.1 m. When the objective 
function and the associated errors are defined by equations [1] and [2], ‘calculated error variance’ and 
‘standard error of the regression’ are defined as s2 and s, respectively and given by: 
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For non-linear regression to be successful, standard error of the regression, s, must be close to one (Hill and 
Tiedeman 2007). If it is considerably larger than one, it means that the regression can not reach to the 
optimal state. This occurs when either parameterization of the model is poor or the sampling data does not 
adequately support the state of the system being modeled or model is stuck in a local minimum. One way of 
checking this is by plotting the histogram of calculated error variance for different realizations. Ideally, we 
want this distribution to have a normal distribution with a mean of one and a small standard deviation. 

Scenario # of K data # of H data Scenario # of K data # of H data Scenario # of K data # of H data 

No Data 0 0 HEAD_1 0 3 K+H_1 3 3 
PERM_1 3 0 HEAD_2 0 6 K+H_2 6 6 
PERM_2 6 0 HEAD_3 0 9 K+H_3 9 9 
PERM_3 9 0 HEAD_4 0 12 K+H_4 12 12 
PERM_4 12 0 HEAD_5 0 15 K+H_5 15 15 
PERM_5 15 0         

2.47 × 10-3 m/s 

9.12 × 10-4 m/s 

3.35 × 10-4 m/s 

1.23 × 10-4 m/s 

4.54 × 10-5 m/s

1.67 × 10-5 m/s 

6.14 × 10-6 m/s 

2.26 × 10-6 m/s 

8.32 × 10-7 m/s 

5.00 m 

4.00 m 

3.00 m 

2.00 m 
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The histograms in Figure 3 show the distribution of standard error for 100 realizations, before and after 
ranking based on the value of standard error of regression. In fact, histogram to the left shows the 
distribution of standard error for the first 100 realizations that are conditioned by SSC. The histogram to the 
right shows the distribution of the best 100 realizations out 400 realizations that were conditioned by SSC 
after ranking based on the value of standard error of regression.  

 

 

 

 

 

 

 

 

Figure-3: The distribution of standard error for the first 100 realizations conditioned by SSC (left), and the 
distribution of standard error for the best 100 out of 400 realizations conditioned by SSC (right).    

This study shows that (1) not all realizations conditioned by the SSC fully honor the pressure head 
observations and their associated errors and (2) a post-processing by ranking can remove unrepresentative 
realizations.  

Incremental value of additional data 

The value of additional data is studied based on two evaluation criteria. The first criterion is the average 
absolute error (AAE) which is calculated for both ln-K and pressure head and is given by:  
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Where, N is the number of grid cells and X represents either natural log permeability or steady – state 
pressure head. The other evaluation criterion is average ensemble standard deviation given by:  
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where, 
iXσ is the ensemble standard deviation at 

a given node. Figures 4, 5, 6 show the calculated 
AAE for natural log permeability and hydraulic 
head, and AESD for natural log permeability, 
respectively. The results are presented for 
different scenarios indicated in Table 1. Also, 
the values of AAE and AESD are standardized 
so that each of AAE and AESD is equal to 100 
for scenario with no conditioning data.  

The results show that as expected conditioning 
to both static and dynamic data improves the 
estimation of permeability and flow fields. The 
importance of conditioning to dynamic data in 
reducing the uncertainty in permeability field is 
clearly observed in Figure 6.       
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Figure-4: Reduction of AAE for ln-K with inclusion of 
more static, dynamic, and static+dynamic data.    



 124-4 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure-7: E – type mean for ensemble of realizations conditioned by static data only (left), dynamic data 
only (middle) and static and dynamic data (right). It is clearly shown that inclusion of pressure head data 
(dynamic data) significantly improves the prediction of large scale features and their connectivity. From 
left to right, these E-type maps correspond to scenarios PERM_5, HEAD_5 and K+H_5 in Table 1.    
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Figure-5: Reduction of AAE for pressure head with 
inclusion of more static, dynamic and static+dynamic 
data.    

Figure-6: Reduction of AESD for ln-K with inclusion 
of more static, dynamic, and static+dynamic data.   


