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On a Generalized Linear Model of Coregionalization 
S. Elogne and O. Leuangthong 

The practice of modeling the cross and direct semivariograms together to describe the covariation of p  
attributes can be a  cumbersome task since the models that are fitted must lead to a positive semi definite 
matrix. This requirement is satisfied when linear model of coregionalization is used for the fitting process. 
One major limitation of the linear model of coregionalization is the constraint that all direct and cross 
semivariogram share the same set of basic structures, which can prove time-demanding and can produce a 
poor fit. In this paper, we generalize the linear model of coregionalization and prove that we can still 
ensure the positive semi definiteness requirement of the coregionalization matrices without necessarily 
requiring the same set of basic structures. We provide an example of such model of coregionalizalition 
where the classic linear model of coregionalization (LMC) cannot be applied. A real data example from the 
mining is also used for illustration. 

Introduction 

The widely used linear model of coregionalization (Journel and Huijbregts, 1978) comes to a limitation 
when one has to select  the prior  number and the types of the nested structures, which remain somewhat 
arbitrarily conducted and can cause a poor fit of the linear model of coregionalization. The enforcement 
that all  cross semivariogram models must contain all the nestedstructures involved in all the directs 
semivariogram models  is less realistic although in practice the user copes to justify this assumption by 
paying an 'human-consuming' effort and a 'time-demanding' process when selecting those priors models 
(Yao and Journel, 1998). Indeed, in addition to the fact the one attribute could follow from a differentiable 
process and the other could come from a non-differentiable model, it is unclear why all the attributes 
should share the same common pool of orthogonal random fields. Some alternatives approaches to 
overcome some limitations of the linear model of coregionalization have been proposed by several authors 
(Journel and Yao, 1998), (Vargas-Guzman, Warrick and Myers, 2002) who considered  the Bochner's 
spectral representation of covariance functions. 

A practical example in petroleum is that seismic data looks like Gaussian, porosity data looks like Spherical 
or exponential while the cross seems to follow the seismic data model, that is Gaussian. Another example 
of possible limitation of the LMC will be in any automatic fitting process with no prior specification of any 
nested models. For instance consider an automatic fitting approach of all the semivariogram estimates by a 
flexible model like a Mat\'ern model, where there is no need to consider more than two nested structures. 
Assuming the estimates are consistently given, there is no argument to justify why the fitted Matern models 
directs semivariogram should be proportional and that the fitted Matern cross semivariogram model will be 
expressed as a linear combination of the fitted ones. 

The method described in this paper aims to generalize the linear model of coregionalization (LMC) by 
allowing a more freedom in the modeling process. It does not necessary allow a prior selection of a set of 
basic structures and may overcome the requirement that all the models presents in the cross semivariogram 
model should be found in all the direct semivariogram models. We discuss and propose an early approach 
for checking the positive definiteness property. The main results obtained in the paper include the 
following: (i) the generalized linear of coregionalization is formulated. (ii) A theoretical example where the 
classic LMC is limited is given. (iii) A real data example from the mining is carried out to illustrate the 
approach. 

Theoretical Development of the Generalized LMC 

Consider a set of p second order random fields  defined for points . For 
covariance or semivariogram modeling purposes the second order stationary and ergodic conditions are 
commonly assumed for all p random fields. The commonly used linear model of coregionalization (Journel 
and Huijbretjs, 1978, p. 171) writes each attribute as a linear combination of a same set of spatially 
orthogonal random fields , following 
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yielding the well known linear model of coregionalization (LMC) (Goovaerts, 1997) and all the limitations 
imported by this approach. In the following we consider a more flexible approach as follows. 

• For each attribute , we consider a set of L orthogonal second-order stationary random fields 
, such that 

 

where  is the Kronecker symbol which takes the value one if i=j and zero otherwise. 

• For two different attributes  and  with  the set of orthogonal random fields 
 and  are not necessarily the same and moreover are not 

orthogonal, that is there exists a covariance matrix such that 

 
Thus we write 

 

where the random field  depends on k and has covariance  . It follows that the covariance 
between two attributes  and  is given for any h by  

 
Using Equation (3), we get  

 
and  

 

where . This generalized linear model of coregionalization means that the nested structures 
involved in the cross-covariance models are not necessary the same those involved in the direct as they 
depend on k and k'. Thus the direct/cross covariance matrix is as 
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Thus  is positive semi definite for any I, the matrix  is positive semi definite. We 
have  

 
where for two matrices A and B, the product  is the entry-wise product of A and B or the 
Schur/Hadamard product of matrices. It is proved in (Horn and Johnson, 1985, page 458) that a sufficient 
condition for  to be a positive definite matrix is that both A and B are positive semi definite matrices. 
In the classic linear model of coregionalization, the second matrix B is the same for all the entries, while in 
this generalization, there are not asked to be the same. In terms of semivariogram, the matrix of 
coregionalization is as 

 
The main rule is that the direct cross semivariogram models should have more nested structures than the 
cross semivariogram. We do not ask for each nested presents in the cross to be presents in both direct, 
which is an extension. One important which can be pointed out is checking the positive definite property. 
One obvious solution can be a numerical approach alongside with the one proposed by Goulard and Voltz 
(1992). Another approach (probably the simpler) will rely on the fact that only few models (Spherical, 
Gaussian, Exponential) are the most widely used in any geostatistics modeling. Thus writing a simple 
algorithm for plotting the determinant as a function of the lag  using those basics models can be an 
efficient method for checking the positive definite requirement, unless the practitioner can proceed by 
hands. 

Theoretical Example of the Limitation of the LMC 

In this section, we provide a theoretical model example where the linear model of coregionalization cannot 
be applied. Consider two attributes $Z$ and $Y$ and consider the following model of coregionalization as  

 
This constitutes a typical example where the cross semivariogram is modeled through a Gaussian model. 
The classic LMC cannot be applied to such a model since the cross semivariogram  has a Gaussian 
structure with a long dependence range, while the two directs semivariogram do not incorporate this 
Gaussian model. This model coregionalization can be written in a general form as 
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where the range A and B which are involved in the direct semivariogram are not necessarily equal. In this 
case, the GLMC (12) involves three different semivariogram models, where none of the models presents in 
the direct semivariograms is in the cross semivariogram, except the nugget. System (11) is obviously 
recovered by taking (A,B,C)=(8,12,15) and (a_1,a_2)=(0.2,0.8), (b_1,b_2)=(0.3,0.7)  
(c_1,c_2)=(0.02,0.48). Figure (1) gives the plots of all this generalized model of coregionalization.  

  
Figure 1:  Theoretical example of positive semidefinite generalized linear model of coregionalization 
where the classical linear model of coregionalization finds itself limited. 

Below, we prove that the GLMC given in Equation (12) is positive semi definite. Write that 

 
or equivalently  

 
The conventional linear model of coregionalization will instead enforce the above matrix $M$ to have the 
same entries and will rely on the semi definiteness condition as 
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Write that Equation (15) as 

 
Assume the following 

1. C > A  

2. A > B 

3. Consider that 

 
Let us prove under the inequality (16) that the following matrix 

 
is positive definite. It is enough to show that 

 
Since A> B, then . Then to prove Equation (18), it suffices to prove that 

 
or equivalently  

 
Since C>A, it follows that . Thus to prove Equation (18), it is sufficient to prove that 

 
We have 

 
If h is such that 3h/A <1, it is clear that . Now consider the case where 3h/A>1. We get  

 
Since 3h/A>1, it follows that  
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since by condition p>1, which concludes the proof. Different examples can be provided as valid 
generalized models of coregionalization. We believe that an efficient way to check for positive definiteness 
will be for sure a numerical consideration.   

Mining Example 

A real data example in the mining is considered to illustrate the flexibility of the generalized linear model 
of coregionalization and the limitation of the LMC and its variant like the two type of Markov models 
assumptions. In all the examples, the data will be centered and standardized through the empirical statistics. 
We consider an example from the Jura data set (Goovaerts, 1997) involving the metals Cr and Zn. We use 
the validation data set with a small sample of size n=100. The generalized linear model of coregionalization 
is plotted in Figure (2) below. The direct semivariogram of the Chromium looks like Gaussian, the one of 
the Zinc looks like exponential which a long range while the cross semivariogram looks like exponential 
with a shorter range realitevly close to the range of the Chrominum. This model then involves three 
different semivariogram models and thus cannot be modeled by the LMC. The answered is then beard by 
the generalized linear model of coregionalization. This model is written as 

 
The generalized model (20) is clearly different from the above example since the first direct semivariogram 
model is a Gaussian while in the previous case, it was an exponential model. This example is reminiscent to 
the petroleum example between the seismic and the porosity data. It is important to note that the fitting 
process of directs and cross semivariogram estimates has been conducted independently. Let's now ensure 
this model is positive definite. It’s enough to show that 

 

The ratio  is greater that 3.93, that is p>1.98 or again 

 
It is then sufficient to show that  

 
The proof can be obtained in the similar way as above by using the inequality p>1.98. 

Discussion and Conclusion 

A generalized linear model of coregionalization model is proposed as an intension to the linear model of 
coregionalization. This model is more flexible than the conventional linear model of coregionalization 
since it does not necessarily required the direct/cross semivariogram models to share the same nested 
structure models, thus to share the same shape, continuity and differentiability. This approach has the 
advantage to model 'accurately' directs and cross semivariogram 'independently' before the step of checking 
the positive definiteness requirement takes place. The only requirement is that  only the number of nested 
structures in the cross semivariogram model should be less or equal than those present in the directs 
semivariogram models.  
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In continuing research, we aim to propose a consistent and computational method that automatically 
ensures the positive definiteness property through the spectral representation of conditionally negative 
definite functions. 

 

 
Figure 2:  A mining example from the Jura data set using a sample of size n=100. The cross variogram 
shares the same shape as the primary variable (Chrominum data) but does not incorporate any exponential 
model which guides the spatial dependence of the secondary data. 
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