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Modeling Local Uncertainty accounting for Uncertainty in the Data 

Olena Babak and Clayton V. Deutsch 

 
Consider the problem of estimation at an unsampled location using surrounding samples.  The standard 
approach to this problem is kriging.  Kriging uses the spatial correlations provided by the variogram to 
calculate the weights of the sample values surrounding an unsampled location.  The weights obtained from 
the kriging equations minimize the estimation variance and account for the spatial correlation between the 
surrounding samples and the estimation location (that is, closeness to the estimation location) and between 
sample themselves (that is, data redundancy).  Kriging results in optimal estimation (in the case of a known 
variogram model) and provides a model for local conditional distributions; in the Gaussian framework, the 
kriging estimate and kriging estimation variance are exactly the mean and variance of the local conditional 
Gaussian distributions.  Oftentimes, however, the exact sample data are not known due to measurement 
errors.  In this case simple kriging can not be directly applied to infer the local conditional distributions.  A 
theoretical framework for incorporating data uncertainty into calculation of the local uncertainty 
distributions is required. 
 
Simple Kriging 
 
The simple kriging estimator predicts the value of the variable of interest z(u) at the estimation location  u 
as a linear combination of nearby observations niz i ,,1),( …=u (u), (Journel and Huijbregts, 1978): 
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where m  denotes the stationary mean, T
n ))(,),(( )(1 uu uλλλ …=  denotes the vector of the simple 

kriging weights calculated from the normal system of equations 
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where ),(,,1,)),(),(( uuu njizzCov ji =  denotes the data-to-data covariance values and 

),(,,1)),(),(( uuu njzzCov j =  is the data-to-estimation point covariance values. The covariance 

function is calculated under stationarity through the semivariogram model )(hγ . 
 
Simple kriging is the best linear unbiased estimator, that is, it provides estimates with minimum error 
variance )(2 uSKσ  in the least square sense given by 
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where )0(C  is the stationary variance. 
 
In the Gaussian framework the local conditional distributions are derived by simple kriging as follows 

Uncertainty at the estimation location u is )).(),(*(~)( 2 uuu SKSKzNZ σ       (4) 
 
Accounting for the Uncertainty in Data 
 
Let us assume that each of the observations niz i ,,1),( …=u (u), available for analysis was measured 
with some measurement error.  Further assume that the measurement errors are distributed according to 
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Gaussian (normal) distribution; thus, uncertainty in each observation (random variable) 
niZ i ,,1),( …=u (u) can be expressed as follows: 

),,(~)( 2
iii NZ σμu  ni ,,1…= (u),   (5) 

where iμ  and 2
iσ  denote the mean and variance of the uncertainty distribution in i-th data.  For now let us 

assume that the observations niZ i ,,1),( …=u (u), represent independent random variables, e.g., each 
data location was measured using different measurement tool. 
 
When the observations are no longer assumed to be known, the mean of the local conditional distributions 
is a random variable.  The variance of the local conditional distributions given in (4) is not a random 
variable because the simple kriging variance is homoscedastic (see 3).  Because the mean of the local 
conditional distribution is a random variable, the uncertainty at the unsampled location u is described the 
following hierarchical model 

)),(),(*(~)(*|)( 2 uuuu SKSKSK ZNZZ σ  

)]),(*[)],(*[(~)(* uuu SKSKSK ZVarZENZ           (6) 
where 
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Note that distribution of )(* uSKZ  is Gaussian because it is a linear combination of Gaussian random 

variables. Furthermore, due to (7), the mean and variance of the distribution for )(* uSKZ  can be 
calculated as follows: 
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Thus, it follows that the local conditional distributions in the case of data uncertainty can be expressed 
using the following hierarchical model: 

)),(),(*(~)(*|)( 2 uuuu SKSKSK ZNZZ σ  

),,(~)(* 2
)(*)(* uuu

SKSK ZZSK NZ σμ           (10) 

where )(* uSKZμ  and )2
)(* uSKZσ are given in (8)-(9). Moreover, note that the mean and the variance of local 

conditional distributions are given by: 
;)](*[)]](*|)([[)]([ )(* uuuuu

SKZSKSK ZEZZEEZE μ===   (11) 

.)()](*[)]([

)]](*|)([[)]](*|)([[)]([
2

)(*
22

uuuu

uuuuu

SKZSKSKSK

SKSK

ZVarE

ZZEVarZZVarEZVar

σσσ +=+=

+=
  (12) 

The shape of the local uncertainty in )(uZ  is Gaussian. 
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It worth noting that when the observations niZ i ,,1),( …=u (u), do not represent independent random 
variables, but are correlated with a prescribed correlation structure, the mean and variance of the local 
conditional distributions can be calculated following the same steps as before expect variance of 

)(* uSKZ  needs to be calculated as 
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Moreover note that the above derivations heavily rely on the assumption that the variogram model for the 
study domain is known; uncertainty in the data does not impact the assumption of the stationary variogram 
model. 
 
Small Examples 
 
Example 1: Consider the data configuration shown in Figure 1.  In total, there are 4 conditioning data 
available for inference of the local conditional distribution at the unsampled location. All conditioning data 
are known subject to measurement errors; the distributions of the conditioning data are Gaussian with 
different means iμ and variances 2

iσ , ,4,,1…=i see Table 1 below. Study domain of size 10 by 10 units 
is assumed to be stationary; stationary mean and variance are 0 and 1, respectively. The variogram of the 
data is a single structured spherical with nugget effect of 0 and range of correlation of 10 units. 
 
Table 1: Data locations and values 
 Data 1 Data 2 Data 3 Data 4 Unsampled 

Location 
X position 1 5 9 3 5 
Y position 3 7 8 2 5 
Value ),( 2

11 σμN  ),( 2
22 σμN  ),( 2

33 σμN  ),( 2
44 σμN  ? 

 
We will vary the means and variances of the conditional data distributions to assess the impact of data 
uncertainty on the resulting local uncertainty distribution inferred from simple kriging. First, let us fix iμ ’s 
as follows 

;1.0;4.0;2.0;8.0 4321 −=−=== μμμμ  

and examine the effect of 2
iσ ’s. Table 2 show results for five different scenarios for 2

iσ ’s. Note that 
Table 2 shows only results for the variance of the local distribution of uncertainty accounting for data 
uncertainty, that is, )]([ uZVar ; this is because the mean of the local conditional distribution is 

independent of 2
iσ ’s and equal to 0.0884. 

 
Table 2: Effect of 2

iσ ’s on the local uncertainty distribution. 
 Case 1 Case 2 Case 3 Case 4 Case 5 

2
1σ  0 0.1 0.3 0.5 0.8 

2
2σ  0 0.2 0.4 0.6 0.9 

2
3σ  0 0.1 0.2 0.2 0.6 

2
4σ  0 0.3 0.4 0.4 0.7 

)]([ uZVar  0.4094 ( 2
SKσ ) 0.5073 0.5871 0.6574 0.7915 
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It can be clearly noted from Table 2 that with an increase in the data uncertainty (that is, increase in the 
variance of the conditional data distributions), the variance of the local conditional distribution at the 
unsampled location increases.  Moreover, when there is no uncertainty in the conditioning data; the 
variance of the local conditional distribution at the unsampled location is equal to simple kriging variance. 
 
On the other hand, if we fix 2

iσ ’s as: 

;4.0;3.0;2.0;8.0 2
4

2
3

2
2

2
1 ==== σσσσ  

we can observe that with increase in the mean of the conditional data distributions, the mean of the local 
conditional distribution at the unsampled location increases, see Table 3. 
 
Table 3: Effect of iμ ’s on the local uncertainty distribution. 

 Case 1 Case 2 Case 3 Case 4 

1μ  -0.8 -0.2 0.2 1 

2μ  -0.2 0.2 0.2 1 

3μ  -0.4 0.4 0.4 1 

4μ  -0.1 0.1 0.1 1 

)]([ uZE  -0.1933 0.1654 0.1765 0.9780 

 
Note that Table 3 shows only results for the mean of the local distribution of uncertainty accounting for 
data uncertainty, that is, )]([ uZE ; this is because the mean of the local conditional distribution is 

independent of iμ ’s  and equal to0.5176. 
 
It is worth noting that the results shown in Tables 2-3 were theoretically calculated from Equations (11)-
(12). There is, however, another much more computationally intensive approach based on Monte Carlo 
simulation to obtain the same result. Specifically, in order to calculate the mean and variance of the local 
uncertainty distribution accounting for parameter uncertainty via Monte Carlo simulation approach the 
following steps need to be undertaken: 

1. At each of the conditioning data locations draw a value from the conditioning data 
distribution using Monte Carlo simulation approach; 

2. Apply simple kriging to calculate the mean and variance of the local conditional distribution 
using the conditional data generated in 1; 

3. Draw a value from the local conditional distribution obtained in 2. Add to the database; 
4. Repeat steps 1-3 many times, say 20000. 
To show the equivalence of the theoretically derived local conditional distributions of uncertainty 

and the ones obtained using Monte Carlo simulation, let us repeat analysis of Table 2. Results are shown in 
Tables 4.  
 
Table 4: Theoretically-derived approach vs. Monte-Carlo simulation: Variance of the local uncertainty 
distribution 

)]([ uZVar  Case 1 Case 2 Case 3 Case 4 Case 5 
Theory 0.4094 0.5073 0.5871 0.6574 0.7915 
Simulation 0.4071 0.5078 0.5884 0.6545 0.7974 
 
The results of theoretically-derived approach vs. Monte-Carlo simulation approach match perfectly; the 
difference between results of both approaches could have been even smaller if instead of 20000 drawings in 
Monte-Carlo approach 100000 or more were used. 
 
Example 2: To further understand the influence of the data uncertainty on the local conditional distributions 
at the unsampled locations, let us asses the change in the variance of the local conditional distributions 
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(accounting for data uncertainty) over the study domain. Let us consider the same data configuration as 
before; set the means of the conditioning data distributions at: 

;1.0;4.0;2.0;8.0 4321 −=−=== μμμμ  

and consider three different cases, that is, case 3, case 4 and case 5, for 2
iσ ’s, see Table 2. In present study 

let us also consider two different variogram models, both single structured spherical with nugget effect of 
0, but one with range of correlation equal to 10 units and the other one with a range of 5 units and let us 
compare results. 
 
Figure 2 shows results obtained in each case. It can be clearly noted from Figure 2 that with increase in the 
range of continuity, the variance of the local conditional distributions decreases. The variance of the local 
conditional distributions is usually lies in the interval from 0 to 1. However, it can be also higher than 1, see 
Table 5. 
 
Table 5: Maximum variance f the local conditional distributions over the study domain. 
Maximum )]([ uZVar   Case 3 Case 4 Case 5 
Range 5 1 1 1.0021 
Range 10 0.9967 0.9993 1.0446 
 
Conclusions 
 
In this paper a new interesting framework for incorporation of the data uncertainty into geostatistical 
estimation is presented.  The theory behind the methodology was developed in detail; theoretical results 
were compared with practical results obtained via direct Monte Carlo simulation. Two small examples 
illustrating the change in the local uncertainty when incorporating data uncertainty were presented. 
 
 
 
 

 
Figure 1: Data configuration for Examples 1. 
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Figure 2: Variance of the local conditional distributions accounting for the uncertainty in the data obtained 
based on a single structured spherical variogram with nugget effect of 0 and range of continuity 5 (left) and 
10 (right) : case 3 (top), case 4 (middle) and case 5 (bottom). 
 


