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Reproducing Local Proportions in MPS Simulation 
 

Steve Lyster 
 

Simulation of geologic structures has advanced in recent years to use ever-more sophisticated techniques 
and account for more complex spatial structure.  Multiple-point statistics (MPS) is a developing field that 
uses spatial relations of order greater than two to characterize the structure of resource deposits such as 
petroleum reservoirs and vein-type ore deposits.  Increasing the complexity of the methods used in 
geostatistical simulation can lead to difficulties when trying to integrate all available information.  In many 
reservoirs secondary data such as definable vertical trends, seismic surveying, or other geophysical 
information is available; in these cases the resource estimates and characterization of uncertainty is 
improved by using these “soft” secondary information sources. Reproducing these secondary information 
by using a variety of techniques will be explored and implemented in MPS simulation. 

Introduction 
The family of methods described by the term Multiple-Point Statistics share a common property: all use 
some form of spatial statistics that are of order greater than two and therefore go beyond the linear 
estimation paradigm of kriging. There are numerous methods which have been proposed and/or 
implemented to use MPS. The first, and most well-developed, simulation method using MPS is the single 
normal equation approach which uses Bayes’ Law and direct inference of conditional probabilities from a 
training image to populate the simulation grid. This method was first proposed by Guardiano and 
Srivastava (1993) and was further developed in numerous papers including Strebelle et al (2002). Some 
other methods utilizing MPS are simulated annealing (Deutsch, 1992, Lyster et al, 2004), a Gibbs sampler 
algorithm (Srivastava, 1992, Lyster 2007), and neural networks (Caers, 2001). 

These four methods all simulate facies indicators only and not continuous variables, which is typical of 
most MPS techniques. This is due to the relative ease of creating a categorical training image (TI) from 
which the MPS may be inferred; it is very difficult to directly characterize complex spatial structure from 
sparse data. TIs can be created by outcrop mapping, simulated geologic processes, simulation involving the 
geometric shapes seen in the deposit, expert interpretation, or any other desired technique (Boisvert, 2007). 

Three of the four MPS simulation methods mentioned above are iterative algorithms. There are advantages 
to an iterative approach, which will be discussed later. Iterative methods have their own particular strengths 
and weaknesses but share a number of common issues both in theory and in implementation. The particular 
subject of interest in this paper is the use and reproduction of locally varying proportions of facies 
determined from secondary data. 

Secondary Data and Local Proportions 
“Soft” data, also called secondary or likelihood information, can be useful in characterizing subsurface 
phenomena. This information is faster, cheaper and easier to obtain than “hard” sample data such as 
drillhole samples or well logs; however, secondary data does not explicitly define which facies occur at any 
given location, rather giving probabilities which may be of varying usefulness and reliability. Secondary 
data defines local probability density functions (PDFs) which represent the proportion of each facies 
occurring at all individual locations. These local PDFs are useful in that they define areas likely to contain 
the facies of interest, such as petroleum-bearing channel sands or high-grade ore veins. 

Methods for Using Local PDFs 
There are a number of possible methods for using local PDFs obtained from secondary information. These 
include: Bayesian updating or the assumption of full independence between data sources; the permanence 
of ratios framework; tau and lambda models which account for data redundancy; and the servosystem or 
additive method. All of these methods determine the probability of a facies, A, given the hard data, B, and 
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the secondary information, C, to form a single conditional probability. Regardless of the method utilized 
one of the most important considerations for local PDFs is honouring values equal to zero or one, which 
correspond to full certainty in the absence or presence of facies. 

Bayesian updating (Deutsch, 2002) is a very simple multiplicative approach that is fast and easy to apply. 
The Bayesian updating method, in a general sense, is used to integrate prior and likelihood distributions 
into an updated posterior distribution. Assuming there is no variance for the likelihood PDF determined 
from secondary data, the equations simplify to: 
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The Bayesian updating equation may be used to integrate any number of primary and secondary data; 
however, as shown here there is the implicit assumption of full independence between the data (Journel, 
2002) and this assumption is often unrealistic. The updated distribution as shown in Equation 1 is often 
more extreme than it should be when the local PDF is higher or lower than the global distribution. 

More stable than full independence is the permanence of ratios approximation (Journel, 2002). This 
approach assumes the incremental information provided by the secondary data is the same before and after 
the hard data is taken into account. Permanence of ratios uses the following definitions: 

( )
( )

1 | ,
| ,

P A B C
x

P A B C
−

=
  

( )
( )

1 P A
a

P A
−

=
 

( )
( )

1 |
|

P A B
b

P A B
−

=
  

( )
( )

1 |
|

P A C
c

P A C
−

=
 

Using these definitions, the probability of a facies that accounts for both hard and soft data can be 
determined from x which can be found by the relation: 

 
x b c
a a a
= ⋅  (2) 

This approach has the benefit of constraining the results between zero and one, as long as the initial PDF 
and CPDF are both licit. However, there is still the assumption of independence between the data sources. 

The reintroduction of data redundancy may be accomplished with what are termed a “tau model” or 
“lambda model” (Journel, 2002, Hong and Deutsch, 2007). The basic idea of this approach is to reduce the 
influence of the different data types by adding an exponent to Equation 2 as follows: 
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The parameters may be set to any values desired, with 1.0 not affecting the data influence at all, 0.0 
removing the influence entirely, and negative values reversing the influence of the data. There are a number 
of possible approaches to determining the parameters, and different values may be used for different data 
types and even for each facies (Hong and Deutsch, 2007). This method retains the licit PDF properties of 
the permanence of ratios, no matter what the controlling parameters are set to. Often the parameter on the 
hard sample data is left as 1.0 and the secondary data are scaled on that basis. 

Another method for honouring the local distributions involves adding the difference between the local and 
global PDF values to the conditional probabilities that have been estimated whether these estimates are 
determined through indicator kriging, Bayes’ law, MPE estimation, or any other method. 

 ( ) ( ) ( ) ( )| , | |P A B C P A B P A C P A= + −  (4) 
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This approach is similar to a servosytem correction for matching global facies proportions (Strebelle and 
Journel, 2001) and the two may be easily combined in the following equation: 

 ( ) ( ) ( ) ( )| , | | simP A B C P A B P A C P Aμ ⎡ ⎤= + ⋅ −⎣ ⎦  (5) 

The µ value is a controlling parameter, typically set to 1.0 but it may be lowered to reduce the influence of 
this correction if the prior statistical model is not properly reproduced. 

Using an additive method such as this has the disadvantage of not explicitly honouring local PDF values of 
zero or one. It is relatively easy to enforce these locations by setting the unsampled locations with a PDF 
value of one to the appropriate facies, then not visiting these locations; this greatly improves the efficiency 
of iterative simulation methods in particular as each location is be visited a number of times. To honour 
values of zero in a local PDF, a check must be carried out to ensure the respective facies are not selected by 
the algorithm used. 

Iterative Simulation Considerations 
There are several advantages to iterative simulation methods. The main reason for using a technique where 
every location must be visited a number of times is the computational efficiency of not having to search or 
account for nearby samples in an irregular, unknown pattern (Srivastava, 1992). There is, however, 
difficulty in matching a locally varying PDF in iterative methods. The most direct way to reproduce local 
PDFs at the beginning of an iterative realization is to draw the initial image from the local, rather than 
global, distributions. This ensures reproduction initially, although as the algorithm proceeds there will no 
doubt be large changes made to the entirely random structure of the initial image. 

Using the methods outlined above for honouring local information, a significant problem was encountered 
when using the Gibbs sampler MPS algorithm outlined in Lyster, 2007. The local PDFs were greatly 
exaggerated due to the repeated application of the correction methods; rather than use Bayesian updating or 
permanence of ratios only once, as in a sequential simulation algorithm, whichever PDF correction 
approach was used was applied at every location on each pass through the grid. With the local PDF being 
applied a number of times it tended to overwhelm the spatial structure of the prior model determined from 
the TI and give unrealistic results. 

A proposed solution to this problem is to apply the servosystem additive correction within a user-defined 
number of “bins”, Bk = 1,…,NB for all K facies. The local PDF distributions are divided up into the 
appropriate number of bins, and each location falls within one bin for each facies. The global simulated 
proportion of each facies within each bin is then corrected by a servosystem, so for example at locations 
where a certain facies is expected 90% of the time the global proportions within that bin are in fact 90%. 
The corrections to the conditional probabilities with this approach are: 

 ( ) ( ) ( ) ( )** * ,LOC SIM
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Discretizing the local PDFs in this manner leads to reproduction of the global PDFs within each bin; this is 
equivalent to honouring the local PDF values. The Bk bin numbers may be calculated easily using the 
equation 
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The epsilon parameter in Equation 7 is a very small number, say 10-10, which is used to ensure all local 
PDF values are assigned valid bins greater than zero and no greater than NB. This multiple servosystem 
method shows promise for iterative methods, and the results in practice will be explored. 
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Examples 
To illustrate the problem of exaggeration of high and low local PDF values, several of the methods for 
utilizing secondary data were used in unconditional MPS simulation using a Gibbs sampler algorithm 
(Lyster, 2007). The training image used for these simulations is shown in Figure 1. There are four facies, 
ranging in reservoir quality from background shale to high-quality channel sands, with low- and medium-
quality lobes. This TI and data set may also be seen in Boisvert, 2007, and Hoffman et al, 2005. 

The model of the reservoir is 78 by 59 by 116 cells, with cell sizes of 75 by 75 by 6 feet. The TI was 
created to characterize the good reservoir portion of the model, and for this reason the global univariate 
statistics are greatly different than the data set. The top and the bottom of the model have little good 
reservoir facies, with the majority of the net sands concentrated in two layers towards the middle of the 
model vertically. The highly nonstationary facies proportions make this data set ideal for this type of study. 

A locally-varying PDF model was generated by creating a simple vertical trend from the well data. The 
trend models are shown in Figure 2. The curves for facies 2 and 3 are the noisiest, as they have low overall 
global proportions. The trend for facies 1 clearly shows the two regions of good net reservoir, one at about 
300 feet and the other at about 500 feet; these elevations have the lowest proportion of background shale 
and higher proportions of the better facies. The distributions of the local PDFs are shown in Figure 3. 

Figure 4 shows an unconditional realization which was simulated using the MPS Gibbs sampler and no 
trend, with the target global facies proportions derived from the average of the trend model. The accuracy 
plots over ten realizations for the four different facies does not reproduce the local proportions, which is 
expected. 

The simulation was repeated, this time accounting for the trend and using the Bayesian updating method in 
Equation 1; Figure 4 shows slices of a single realization. It is obvious that the vertical trend is grossly 
overstated in the resulting unconditional realization as the Bayesian updating is applied a number of times 
at all locations. The local proportions are not reproduced. 

In similar examples, Figure 4 shows realizations that use permanence of ratios and the additive method, 
respectively, to account for the local PDF information. While there are some subtle differences the same 
overall results may be seen as for the Bayesian updating. The accuracy plots confirm that the local facies 
proportions are not reproduced. 

Figure 4 also shows a realization which uses the multiple servosystem approach to reproduce the vertical 
trend. This realization is clearly better than those using the other three local PDF methods; the accuracy 
plots in Figure 5 verify that the local facies proportions are reproduced reasonably well. The multiple 
servosystem method is somewhat ad-hoc, but does not affect the speed of the algorithm at all compared to 
the other varying PDF methods. 

For comparison, an unconditional sequential simulation was performed using the SISIM_LM program; a 
realization is also shown in Figure 4. The accuracy plots are similar to those of the multiple servosystem 
iterative method (Figure 5). This helps support the practicality of the proposed approach. 

To explore how the complexity of MPS may make integrating secondary data more difficult, a simulation 
was performed using the Gibbs sampler algorithm but only second-order statistics derived from the TI. This 
is more robust than the simple kriging in the SISIM_LM program but contains less information than the 
MPS used previously. A realization with this technique is shown in Figure 4, and the corresponding 
accuracy plots for ten realizations are similar to those of the multiple servosystem iterative method (Figure 
5).  The vertical trend is reproduced with acceptable variation from the target proportions and the results 
are similar to the MPS and sequential simulations. 

Discussion 
Traditional methods for reproducing local distributions, which are useful in sequential methods, are not 
appropriate for iterative methods due to the nature of these techniques. Many MPS simulation algorithms 
use an iterative framework and as such need a different approach to incorporate secondary data, trends, and 
local PDFs. The multiple servosystem approach proposed here reasonably reproduces a vertical trend 
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derived from hard well data. Multiple servosystems with a user-defined number of bins has been 
incorporated into the MPS Gibbs sampler algorithm under development. 

While a smooth vertical trend is easily reproduced, seismic-derived PDFs with many values equal to zero 
or one has not been explored yet. The peculiarities of hard boundaries may present problems with 
calculation of conditional probabilities and needs to be investigated further. As of yet the assumption has 
been that the user will incorporate all available data into a single PDF model before commencing 
simulation. 

A potential problem may arise when several distinct regions with similar PDFs exist within a model. In 
these cases, the multiple servosystem approach does not distinguish one region from another and if the 
local PDFs are in the same bins they will be treated as a single region to be simulated with one global PDF. 
This may or may not lead to problems and could be remedied by allowing the user to explicitly define 
zones, or by simulating each distinct geologic area separately. 
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Figure 1: Four-facies turbidite training image used for the example. 

 
Figure 2: Vertical trend model of the facies proportions. 

 
Figure 3: Distributions of the local PDF values for the example. 

0.00 0.20 0.40 0.60 0.80 1.00

3
93
183
273
363
453
543
633

El
ev
at
io
n 
(f
t)

Facies 1
Facies 2
Facies 3
Facies 4



129-7 

 

       
 

           
Figure 4: Top row from left to right: unconditional MPS realization without using a trend, Unconditional 
MPS realization using a trend and Bayesian updating, MPS realization using a trend and permanence of 
ratios, and MPS realization using a trend and the additive method.  Bottom row from left to right: MPS 
realization using a trend and the multiple servosystem method and SIS realization using a trend and the 
SISIM_LM program, an iterative realization using covariances, a trend and multiple servosystems. 
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Figure 5: Accuracy plot for the multiple servosystem method realization compared to the input trend. 


