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Nonnet Size Determination with Mass Moments of Inertia 

Olena Babak and Clayton V. Deutsch 

The question of non-net size and connectivity determination is of great practical importance in petroleum 
engineering.  It can be used to assist well placement and prediction of fluid flow responses in latter stages 
of reservoir modeling.  The information on net/non-net intervals (thickness) collected from wells along with 
an indicator variogram of non-net facies can provide a hint to practitioner about the extent and 
connectivity of non-net intervals.  There is still a great degree of uncertainty in the size of these intervals; 
therefore, a sound repeatable method able to quantify the relationship between the length and thickness of 
non-net facies and able to predict the length of non-net interval based on its thickness is needed.  In this 
paper one such approach is proposed.  The proposed approach is based on a novel idea of incorporating 
mass moments of inertia in calculating the size of non-net intervals. 
 
Moment of Inertia 
 
Moment of inertia, also known as mass moment of inertia or the angular mass of a body, is the rotational 
analog of mass; it related to the distribution of the mass throughout the body. Moment of inertia is the 
inertia of a rigid rotating body with respect to its rotation: 
 ∫= dmrI 2  (1) 

where m  is the mass and r  is the perpendicular distance of the point mass to the axis of rotation.  The 
moment of inertia has two forms: scalar form which is used when the axis of rotation is known and the 
tensor form which summarizes all moment of inertia for different axes of rotation with one quantity 
(Hassanpour and Deutsch, 2008).  For a rigid body consisting of N point masses im , the moment of 
inertia tensor is defined as (Hassanpour and Deutsch, 2008): 
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where ,i ix y and iz are the distances of point i from the coordinate axes. xxI  can be interpreted as the 

moment of inertia around the x-axis when the objects are rotated around the x-axis and xyI  is the moment 
of inertia around the y-axis when the objects are rotated around the x-axis. 
 
When a rigid body is an ellipsoid, then its moments of inertia tensor is diagonal. Then the moment of 
inertia of an ellipsoid around its major, medium and minor radius is found as follows (Hassanpour and 
Deutsch, 2008): 
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where aI , bI and cI are moment of inertia around major ar , medium br and minor cr radius, respectively 

and M is the ellipsoid mass. 
 
Calculating the Thickness and Length of Non-Net Intervals with Mass Moments of Inertia 
 
The idea behind the mass moments of inertia approach to calculating non-net size is as follows.  Each non-
net interval within a rock-type model can have an arbitrary assymetric shape and is characterized by its own 
moment of inertia tensor given in (2).  It would be hard to parameterize all possible 
discontinuities/asymmetry of the shape of non-net interval using two parameters such as length as thickness 
directly.  We replace the irregularly shaped non-net interval with a non-net ellipsoid which has ‘equivalent’ 
moment of inertia tensor.  Then, calculation of the thickness and length of given non-net interval is done 
indirectly but in straightforward manner.  Specifically, the thickness of a non-net interval is calculated as a 
vertical radius of the ellipsoid and the length (or width) of the non-net interval is calculated as the average 
of the two ellipsoid radii in the horizontal plane. 
 
Note then ellipsoid with an equivalent moment of inertia tensor to given is just an ellipsoid such that its 
moment of inertia tensor has eigenvalues of the original moment of inertia tensor on the diagonal. Note that 
the largest eigenvalue (and the corresponding eigenvector) and the smallest eigenvalue (and the 
corresponding eigenvector) are related to the areal ellipsoid extent. The length and thickness of non-net 
intervals can be found from (2).  It should be also noted that the moment of inertia approach works well 
only if enough data are available. In the case of small non-net interval, additional partitioning of non-net 
object may be required. 
 
Examples 
 
Let us now illustrate the proposed methodology to non-net size calculation with several examples. All 
examples will be based on unconditional Sequential Indicator Simulation (SIS) of binary codes, that is, net 
(0) and shale (1), based on different proportions of net-non-net facies and different indicator variogram 
models of non-net (and net). Note that continuity of net and non-net is the same due to binary coding. 
 
Each simulation study is conducted as follows. A volume of 100 by 100 by 100 cells of size 10 by 10 by 1 
cubic distance units is populated using SIS (10 SIS realizations are generated). Six cases for different 
net/non-net proportions and indicator variograms are considered. 
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Reproduction of the target proportions is carefully checked. 
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After simulation is completed, a light image cleaning using MAPS (see software catalog) is performed. 
This is done to avoid pixelation inherent to SIS and to make clouds of non-net produced by SIS more 
continuous. In MAPS, a window size (template) of 5 by 5 by 3 is used in image cleaning (more cleaning is 
performed in areal directions). Then the cleaned SIS realizations are analyzed and all non-net geo-objects 
are found. This is achieved using program called geo_obj (see software catalog). This program can scan 
through multiple net/non-net realizations (can also use porosity, permeability realizations) and calculate 
connected regions. Connected regions are defined by face-connected blocks. Each connected region of non-
net will be defined as a separate non-net geo-object. After each geo-object is found, a moment of inertia 
approach can be applied to find the thickness and length of non-net intervals.  
 
Figure 1 shows one example SIS realization for each of the 6 simulation studied. The realizations were 
cleaned with MAPS.  It can be noted from Figure 1 that depending on the net/non-net spatial continuity 
structure characterized by the indicator variogram and the proportions of each net and non-net facies, 
intervals of different thickness and length are obtained for net and non-net facies. In particular, the largest 
(thickest and longest) fairly continuous non-net intervals are observed in simulation studies 1 and 4 due to 
long range of continuity of the variogram used to generate simulated realizations. The thinnest non-net 
intervals are observed in simulation study 2. With increase in the global proportion of non-net (net) facies, 
the thickness of non-net (net) intervals increases. 
 
Figure 2 shows results for the thickness vs. length of non-net intervals for each of the 6 simulation studies 
zoomed to thicknesses up to 10 units. Figure 2 also shows the 755025 ,, PPP  probability curves for length 
as a function of thickness. These curves can be used to predict the length or give a probability interval for 
the length of non-net intervals for a given observed thickness.  
 
When analyzing Figure 2, it can be easily noted that with increase in the proportion of non-net facies, for 
the same non-net thickness interval, longer non-net intervals are usually observed. Moreover, it is also 
interesting to note that despite the variograms 1 and 3 used in simulation studies are very different. That is, 
first variogram is characterized by very long ranges of continuity in each principal direction; the third 
variogram is characterized by very short ranges of continuity in each principal direction. However, results 
of simulation studies obtained based on these two different variograms are quite similar (see case 1 and 
case 3). This is because, in the case 1 the simulation produces very long quite continuous intervals; while in 
the case 3 the simulation produces a lot of smaller intervals which oftentimes overlap with each other due 
to short ranges of continuity.  
 
Figure 3 shows the histograms of the ratio of thickness to length obtained in each of the six simulation 
studies. Note that the distribution of the ratio depends on both variogram and proportion of net/non-net 
used in simulation. Also note that the ratio of thickness to length is variable; and can not be assumed to be a 
constant (e.g., taken as a ratio of vertical to horizontal continuity in variogram model). 
 
Conclusions 
 
In this paper an interesting new approach for calculating the size and connectivity of non-net intervals was 
proposed. The developed approach uses the mass moments of inertia calculation to predict the length of 
non-net interval based on thickness and to quantify the relationship between the length and thickness of 
non-net facies intervals. The proposed approach was illustrated using different simulation studies.  The 
results of each study were analyzed and documented. 
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Figure 2: Cleaned 3D SISIM realizations of Figure 1. Shown are middle slices in a) XY; b) XZ; and c) YZ 
direction.  
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Figure 2: Length as a function of thickness for non-net intervals (zoomed): a) case 1; b) case 2; c) case 3; 
d) case 4; e) case 5; and f) case 6. Results are shown only for thicknesses up to 10 units for cases 1-3 and 
up to 5.5 units for cases 4-6. Solid lines denotes smoothed P50 length curves for different thicknesses; 
dashed lines show smoothed (P25, P75) length intervals.  
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Figure 3: Histogram of the ratio of thickness to length of non-net intervals obtained in each of the six 
simulation studies.  


