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Determination of Effective Permeability with Micro-Modeling of 
Digitized Core Images 

Amir H. Hosseini, Oy Leuangthong and Clayton V. Deutsch 

Presence of short-scale variability in sand/shale sequences, preferential sampling of core data, and 
uncertainty in upscaling parameters are complications that make the inference of a reliable porosity – 
permeability relationship impossible. A simple yet effective way of overcoming these complications is 
micro-modeling. The central idea in micro-modeling is to use an additional source of information, namely 
digitized core images, to quantify the uncertainty in power-law averaging parameters and construct the 
porosity-permeability bivariate relationship by Monte Carlo Simulations (MCS). The work-flow in micro-
modeling is comprised of a few steps from digitizing the selected core images to building 3D geo-blocks of 
binary sand/shale mixture, populating them with porosity/permeability values, upscaling the populated 
binary mixture by flow simulations, determining the uncertainty in power-law parameters and 
implementing MCS. The porosity-permeability relationships are constructed on a by-facies basis. Results of 
this research suggest that effective properties of clean sand are changing with the volume fraction of shale; 
and it has ultimately resulted in the development of an extended version of power-law formalism.  

Background 

Mini-modeling technique (McLennan et al. 
2006) was developed to (1) mitigate the bias in 
core porosity and permeability measurements, 
(2) infer bivariate relationship between porosity 
and permeability with limited core data and (3) 
account for the difference between the scales of 
core data and geological modeling grid blocks. 
However, there are a number of shortcomings 
associated with mini-modeling: implementation 
of mini-modeling still requires a number of 
representative parameters at the core-scale; it 
ignores the effect of laminae on core 
permeability measurements; and it neglects the 
uncertainty in the upscaling parameters.       

Micro-modeling through the use of digitized core 
images has been recently developed to 
investigate the uncertainty in upscaling parameters in different scales, to account for important micro-scale 
features with high permeability contrasts, to account for preferentially sampled porosity and permeability 
data, and finally to support the establishment of representative statistics for mini-modeling. A direct result 
of micro-modeling is by-facies porosity-permeability relationship that would support the reservoir 
modeling at scales larger than core plug scale.  

Digitized core images carry important information about micro-scale features and laminae which have 
profound impact on the fluid flow and are often dismissed in core data sampling efforts. High-resolution 
core photographs usually have pixel sizes equal to or smaller than a millimeter. The photographs used in 
this work have pixel sizes of 500 µm on each side.  The overall workflow in micro-modeling includes 
selecting and digitizing by-facies core-photos, creating 3D training images (TIs) from the 2D data sets, 
creating 3D geo-blocks of sand/shale binary mixture, populating the binary mixture with appropriate 
porosity and permeability values, upscaling them to core-plug size, finding the distribution of upscaling 
parameters and performing MCS to find the representative porosity-permeability relationship on a by facies 
basis. The details of the proposed methodology are discussed in the following paragraphs.    

Figure-1:  Core-plug size and geological modeling 
gird size in comparison to multi-scale heterogeneities  
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Construction of binary mixture geo-blocks 

The first step in micro-modeling is the selection of core images on a by-facies basis (Figure 2). The black 
intervals in the core photos are coded as sand and the grey intervals are coded as shale. In the context of 
this work, it has been presumed that different facies are recognized due to different configuration and 
geometry of sand-shale sequences. Laminated sequences are assigned a facies type of Sandy or Muddy 
Inclined Heterolithic Strata (SIHS or MIHS) depending on the fraction of shale; and brecciated sequences 
are identified as the facies Breccia. After selection of and digitizing the images, the preliminary statistics 
such as histogram and indicator variograms are calculated for the 2D TIs. 

A real challenge in micro-modeling is to extract 3D training images from the 2D digitized images. This 
problem has been partially addressed in the context of reconstruction of particulate media and micro-
structures. In similar works, Roberts (1997) and Talukdar et al. (2002) proposed statistical methodologies 
in which the reconstructed 3D models share two-point correlation and chord distribution function with the 
original composite. More recently, Okabe and Blunt (2005) used Multiple Point Statistics (MPS) to 
generate 3D pore space representations from 2D thin sections as TIs. They used multiple template sizes and 
multigrid simulation, and concluded that the use of MPS gives a better prediction of long-range 
connectivity structures that the standard two-point statistics approaches.  

In all of the above-mentioned works hypothesis of isotropic medium was presumed, which is irrelevant in 
the case of micro-modeling. Assuming the medium is isotropic in horizontal direction, a simple mirror 
imaging of the 2D TIs was applied. Three configurations were assumed for the TIs depending on the 
number of times mirror imaging was implemented and orientation of datasets relative to the target 3D geo-
block (Figure 3). Application of each of these 3D datasets depends on the facies being modeled and 
checked by variogram reproduction. A certain area of future research is using MPS and theory of runs 
(chord statistics) in reconstructing the 3D TIs from the 2D core photos.    

Using the mirror imaged 3D dataset, geo-blocks are then populated by a binary mixture of clean sand / 
shale by SISIM (Deutsch and Journel 1998). Figure 4 shows the geo-blocks of the binary mixture for the 
three different datasets. As mentioned previously, reproduction of two-point correlation structure and visual 
calibration to the 2D image can be used to choose the appropriate configuration of mirrored dataset and 
associated binary mixture geo-block. Configuration (c) often shows a better variogram reproduction for 
laminated facies and configuration (a) delivers better results for brecciated facies.   

After construction of 3D geo-blocks of binary mixture of clean sand and shale at nominal micro-scale, 
appropriate distribution of porosity and permeability values must be assigned. There are a number of 
assumptions to this: (1) the porosity and permeability of shale are very small constant values; (2) At very 
small scale, porosity and log horizontal permeability of sand are spatially correlated and have Gaussian 
distributions; and (3) at very small scale, porosity and log horizontal permeability of sand are uncorrelated 
to each other. Based on these assumptions, mean and standard deviation of porosity and log permeability of 
clean sand are sufficient for the modeling purposes and should be independently calculated.  

Mixture-modeling approaches from simple probability-plot regression to more advanced expectation- 
maximization and Markov-chain Monte Carlo approaches can be sought for this purpose. In mixture-
modeling, it is assumed that each of distributions of porosity and horizontal permeability of sand facies is a 
mixture of two underlying Gaussian distributions, one representing clean sand. In the context of 
probability-plot regression approach, these two Gaussian distributions can be detected by fitting two 
straight lines on the probability plot (Figures 5, 6) of sand facies porosity or horizontal permeability. The 
strength of mixture modeling approaches is in their simplicity and independence of Vshale distribution 
which is not available in core plug scale. An alternative approach can be considered for the cases where 
Vshale has the same support as the available data (e.g. full-diameter core data); that is histogram matching 
(Figure 7). In histogram matching, mean and standard deviation of clean sand are calibrated by matching 
the simulated histograms of sand facies porosity and permeability with the observed counterparts. In 
addition to porosity and horizontal permeability, vertical to horizontal permeability ration must also be 
determined. This can be done by repeating the calibration procedure for vertical permeability and finding 
the ratio of the means. The standard deviation of Kv/Kh is simply obtained from the original dataset for the 
sand facies. After calibration of the mean and standard deviation of porosity, horizontal permeability and 
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Kv/Kh ratio of clean sand, the geo-blocks comprising of clean sand – shale binary mixture are populated 
with the calibrated distributions using sequential Gaussian simulations (SGS). An example realization is 
presented in Figure 8.        

Flow simulation and upscaling  

Effective permeability can be written as power-law average of constituent permeabilities, that is:  
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For a binary mixture, equation (1) can be rewritten as: 
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where, ω is power law averaging exponent, VSH is Vshale attribute, and Kshale and Ksand are constituent 
permeabilities for shale and clean sand, respectively. The power law averaging exponent ω and percolation 
threshold Pc are central to power-law averaging in upscaling applications (Figure 9).  

It is well-grounded in theory that the power law averaging exponent ω depends solely on the geometry of 
the sand-shale mixture, flow direction and percolation threshold (Deutsch 1989 among others). In other 
words, ω is independent of constituent permeabilities and sand-shale proportions in the mixture. The power 
law averaging exponent varies between -1.0 (harmonic average) and 1.0 (arithmetic average) and it is often 
estimated by performing flow simulations.    

In this context, percolation threshold Pc is closely related to invasion percolation concepts and represents 
the critical Vshale value at which there is a significant change in the flow regime in the system, that is, 
dominant contribution of low-permeability material (shale) in fluid flow through the heterogeneous porous 
medium. As shown in Figure 9, power-law averaging exponent ω takes considerably different values below 
and above percolation threshold.  

The percolation threshold (Pc), power law averaging exponent below Pc (ωb), and power law averaging 
exponent above Pc (ωa) are facies dependent and have uncertainty. To investigate the uncertainty in these 
parameters on a by-facies basis, flow simulation is performed on an ensemble of micro-models. Multiple 
core images are selected for laminated and brecciated facies and corresponding micro-models (multiple 
realizations) are constructed using the approach described earlier. Flow simulation is used to upscale the 
petrophysical properties from nominal micro scale (500 µm × 500 µm × 500 µm) to nominal core plug 
scale (2.5 cm × 2.5 cm × 2.5 cm). The results of flow simulations in form of porosity – permeability and 
Vshale – permeability bivariate relationship is presented in Figures 10 and 11. Large uncertainties are 
observed in the value of percolation threshold and power law averaging exponents for vertical flow 
direction (Kv) for the laminated facies. These uncertainties are relatively smaller for the brecciated facies.    

Statistical distribution of upscaling parameters can be obtained by fitting Pc, ωb and ωa for different 
ensembles of realizations constructed for different core images of the same facies type.         

MCS with uncertain upscaling parameters 

According to equations [1] and [2], an analytical model for effective permeability can be parameterized in 
terms of:  

• Sand permeability at the smallest scale; 

• Kv:Kh ratio at the smallest scale;  

• Shale permeability at the smallest scale; 
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• Horizontal and vertical percolation threshold; and  

• Power law averaging exponents – below and above Pc.   

A GSLIB-like program MCS_binmixture was prepared based on the above parameterization. Using the 
analytical solution and the associated program for Monte Carlo simulations, by-facies φ – Kh – Kv 
relationships can be obtained (Figure 12).    

 

 

 

 

 

 

 

 

 

 

 
 
 
 

Parameter file for MCS_binmixture program  

Extended power law formalism (EPLF) 

As mentioned previously, the effective permeability can be written as a power law average of the volume 
fraction of shale, the permeability of shale and the permeability of sand (equation [2]). Flow simulation 
indicates that the averaging exponent is largely independent of the volume fraction of shale and the 
constituent permeabilities; it depends on the geometry of the sand-shale. This model has been validated by 
flow simulation (Journel et al. 1986, Deutsch 1989). The results of the associated MCS, however, are not in 
full agreement with practical data; the permeability values for intermediate porosity values appear too high 
(Figure 13-a), as compared to experimental data.  

The main reason for the too high permeability for intermediate porosity values is that the properties of the 
sand depend on the amount of shale. As the volume fraction of macroscopic shale increases, there are more 
small scale variations in sand. The porosity may not be affected significantly, but the sand permeability is 
reduced as VSH increases (Porosity decreases). There are many reasons for this. The main reason is the 
reduced energy of deposition relative to thicker clean intervals of sand. The lower energy of deposition 
leads to poor sorting, reduced grain size, and presence of microscopic shales/clays. The result is lower 
permeability.  

A log-linear decrease in the average permeability of clean sand with an increase in VSH appears reasonable 
given experimental data. Figure 13-b shows the sand permeability (all samples flagged as clean sand) 
relative to the macroscopic collocated VSH from well logs. A mathematical model for how the average sand 
permeability reduces with VSH can be written as a function of the clean sand permeability and the sand 
permeability at an arbitrary macroscopic shale volume: 

( )( ) ( ) ( ) ( )[ ]25.0  loglog
25.0

loglog KKVKVK sandclean
SH

sandcleanSHsand −−=                      [3] 
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where, ( )SHsand VK  is the average reduced sand permeability for a given VSH, sandcleanK  is the average 

clean sand permeability obtained from mixture modeling with sand facies, and 25.0K  is the reduced sand 
permeability at a VSH value of 0.25, and must be fitted by comparing to experimental data. The results 
appear promising and able to fit experimental data. Figure 14 shows the effect of various fitted 25.0K  
values on porosity – horizontal permeability relationship. The model is flexible and grounded in physics; 
however, a criticism is that there are too many parameters to fit. There is only one additional parameter and 
the results should no be over-fit. The calibration of 25.0K  should be conducted using the facies with the 
largest dataset.  

In order to validate the proposed methodology, a flow simulation study was carried out. For this purpose, 
the flow simulator code (flowsim) was modified to account for the changes in properties of sand with 
changes in macroscopic shale content (flowsim_eplf). 

 

 

 

 

 

 

 

 
 

Parameter file for flowsim_eplf program  

 

Figure 15 shows the results of the validation study, in which porosity – vertical permeability bivariate 
relationship for a micro-model from Monte Carlo Simulations is compared to corresponding flow 
simulation results. A 25.0K  equal to 400 mD has been used in the study.   

Application of micro-modeling and EPLF 

In the previous sections, a micro-modeling approach was proposed to account for sampling bias and to 
construct the bivariate porosity-permeability relationship in presence of sparse data. To show the 
application of the proposed methodology for McMurray Oilsands, a number of core photos have been 
selected, digitized and used in generating multiple micro-modeling realizations for laminated and 
brecciated facies (SIHS, MIHS and Breccia). The extended power law formalism (EPLF) with 25.0K  equal 
to 400 mD was used and bivariate relationship between porosity and permeability was build for different 
facies. Figures 16, 17 and 18 compare the simulated and observed porosity-vertical permeability cross-plots 
for SIHS, MIHS, and Breccia facies, respectively.        

Conclusions 

A micro-modeling approach was proposed to account for (1) sampling bias, (2) small laminated features 
with high permeability contrast, and (3) uncertainty in upscaling parameters. In line with micro-modeling, 
the extended power-law formalism was also proposed to account for changes in clean sand permeability as 
a function of macroscopic shale content. The proposed mathematical model was tested against flow 
simulation results and a close agreement was observed. The proposed methodology was also applied to 
build the porosity – permeability relationship for laminated and brecciated facies of McMurray oilsands 
and a good agreement with the experimental data was observed.     
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Figure-2:  Two selected core photos representing laminated (a) and brecciated (b) facies types and their 
corresponding digitized images (c) and (d). 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure-3:  Three different configurations for the 3D dataset to be used in constructing the 3D geo-block 
(training image)   

(a) (b) (c) (d)

(a) (b) (c) 
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Figure-4:  The geo-blocks of clean sand – shale binary mixture for different mirrored data configurations   
 
 
 
 
 
 
 
 
 
 
 
 
Figure-5:  Probability-plot regression for clean sand porosity   
 
 
 
 
 
 
  
 
 
 
 
 
Figure-6:  Probability-plot regression for clean sand horizontal permeability 
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Figure-7:  Histogram matching approach, which is useful where the support of Vshale data and core data 
are comparable (e.g. full-diameter core).  
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure-8:  A representative geo-block populated by calibrated clean sand / shale properties  
 
 
 
 
 
 
 
 
 
 
Figure-9:  Variations of effective permeability as a  
function of VSH. Power law averaging exponent changes  
at percolation threshold.  
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Figure-10:  Porosity-permeability and Vshale-permeability relationships obtained by upscaling to core- 
plug scale for laminated facies (e.g. SIHS).  
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
Figure-11:  Porosity-permeability and Vshale-permeability relationships obtained by upscaling to core- 
plug scale for brecciated facies (e.g. Breccia).  
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Figure-12:  Porosity-permeability relationships for horizontal (a) and vertical (b) permeabilities resulted 
from Monte Carlo Simulations 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
Figure-13: The permeability values resulted from the MCS appear too high for intermediate porosity 
values (a); log-linear relationship between the permeability of clean sand and volume fraction of shale (b). 
 
  
 
 
 
 
 
 
 
 
 
Figure-14: Porosity-permeability relationships for (a) 25.0K =3000, (b) 25.0K =1000, (c) 25.0K =500. 
  

(a) (b)

Volume fraction of shale  

(a) (b)

(a) (b) (c)



 201-11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure-15: Validation of extended power law formalism by flow simulation: Monte Carlo Simulation 
results (a), corresponding flow simulation results (b).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure-16: Simulated (a) versus observed (b) bivariate φ - Kv relationship for SIHS facies.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure-17: Simulated (a) versus observed (b) bivariate φ - Kv relationship for MIHS facies. 
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Figure-18: Simulated (a) versus observed (b) bivariate φ - Kv relationship for Breccia facies. 
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