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Developments Toward Multiscale Modeling 

Talal Alahaidib and Clayton V. Deutsch 

Scale is an important issue in reservoir modeling.  Often multiple data are available for reservoir 
modeling.  Using all available data will reduce the level of uncertainty in reservoir models; however, data 
scale must be taken into account when integrating them into numerical reservoir model.  Integrating data 
from these wide ranges of scales into the reservoir model is a complex task.  It is complex task because 
data measured at different scales reflect different degrees of heterogeneity and can have different degrees 
of accuracy. This paper presents in very general way the attempts to develop a methodology for multi-scale 
reservoir heterogeneity and uncertainty modeling.  The goal is a reservoir model that reproduces the multi-
scale data in a way that encounters no artifacts, no biases and handles numerical features of geological 
data such as nonlinearity and the proportional effect. T he ideas behind the Uniform Conditioning 
technique (which is one of the Gaussian techniques) will be considered to build geostatistical models that 
incorporate data collected from different scales.  The essential idea is to fit the transform with Hermite 
polynomials and adjust coefficients according to scale 

Introduction 

Predicting future reservoir performance is an important goal of reservoir flow models. Performance 
forecasting permits optimization of the economic recovery of the oil and gas resources. Reservoir 
simulation is an established approach to forecast the performance of a reservoir for a particular 
development strategy.  Data is expensive and sparse. Geostatistical models are used with the available data 
to build numerical models for reservoir simulation. Petroleum reservoirs are heterogeneous. Reservoir 
properties such as facies, porosity, permeability, faults, fractures and fluid saturations vary in space. The 
heterogeneity comes from variability in the depositional environment and subsequent events such as 
compaction, solution and cementation. An important goal of geostatistics is to build numerical models of 
heterogeneity that can be used in flow simulation. A central premise of geostatistics is to represent realistic 
spatial variability. Flow simulation is more reliable using geostatistical models that take into account 
heterogeneity. Historical geological models built using different techniques such as inverse distance led to 
less accurate flow forecasting. 

Scale is an important issue in reservoir modeling. The aim is to describe a reservoir volume of 105-107 
cubic meters of rock with few data. The data are gathered from different sources often at a much smaller 
scale. Accounting for the data scale is essential for accurate forecasting. For example, porosity values may 
be determined from cores or well logs that have significantly different scale than the grid blocks in flow 
simulation. The difference in scale should be accounted for when assigning properties to flow simulation 
grid blocks of an even larger scale. Table1 shows some of the available measurements at different scales. 
Geostatistical models can be produced at different scales. The resulting models should be consistent when 
upscaled or downscaled: however, they will not be if the models are constructed by conventional 
techniques. Figure1 illustrates the upscaling and downscaling concept.  The scale is in cubic metres.  
There have been attempts to construct scale consistent models. Several methods for multi-scale modeling 
are available including conventional techniques such as cokriging, sequential gaussian simulation with 
block kriging and bayesian updating of point kriging. 

Direct simulation is a recent proposal. The direct simulation proposal is difficult to implement because of 
practical problems such as the proportional effect. High valued areas often show more variability than low 
valued areas. The proportional effect is a natural phenomenon; it is a fundamental fact that needs to be dealt 
with. The proportional effect can be seen on the variogram and in the prediction of local uncertainties. 
Relative variograms can be used to address the issue of the proportional effect on the variograms; however, 
there is no clear methodology on how to tackle the proportional effect issue in the prediction of local 
uncertainties. Transferring the data to Gaussian units mitigates the proportional effect issue, however, 
multi-scale data cannot be transferred directly to Gaussian units as data from different scale do not average 
linearly which can lead to biases and inconsistencies in the results. A common practice is to perform multi-
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scale modeling with direct simulation techniques, that is, using the data in their original units. This practice 
can handle the difference in scale, but the proportional effect issue still exists as direct simulation 
techniques assume that the variance is independent of the mean, while in reality the variance is indeed a 
function of the mean. A consequence of this assumption is that uncertainty in low valued areas is 
overestimated and uncertainty in high valued areas is underestimated. This paper presents in very general 
way the attempts to develop a methodology for multi-scale reservoir heterogeneity and uncertainty 
modeling. The goal is a reservoir model that reproduces the multi-scale data in a way that encounters no 
artifacts, no biases and handles numerical features of geological data such as nonlinearity and the 
proportional effect. The ideas behind the Uniform Conditioning technique (which is one of the Gaussian 
techniques) will be considered to build geostatistical models that incorporate data collected from different 
scales. The essential idea is to fit the transform with Hermite polynomials and adjust coefficients according 
to scale. 

Recent Previous Work 

Direct simulation techniques such as the exact down scaling technique [Ren,2007] are useful tools to 
predict uncertainty profiles without strong dependence on the Gaussian distribution. One problem with 
such techniques is that they ignore the proportional effect issue by assuming the variance is independent of 
the mean [Manchuk, Leuangthong and Deutsch, 2007]. Uniform Conditioning technique is another way to 
build geostatistical models that incorporate data collected from different scales. The name uniform 
conditioning comes from the conditioning of one scale estimation to preliminary other scale estimation. 
Estimation is first performed at a large scale, and then the Discrete Gaussian model is fit to the data. The 
Discrete Gaussian model is used to estimate the change of support from one scale data to other scales by 
introducing a change of support coefficient. The distribution of data at the small scale is fit with hermite 
polynomials. [Neufeld, 2005]. Uncertainty distributions cannot be generated using Uniform conditioning 
technique. However, Uncertainty distributions can be generated by generating multiple realizations using 
simulation. There are different ways to introduce the change of support coefficient [Machuca, Babak and 
Deutsch, 2008].   

Framework 

This research is aimed at developing a methodology for multi-scale reservoir heterogeneity and uncertainty 
modeling. The goal is a reservoir model that reproduces the multi-scale data in a way that encounters no 
artifacts, no biases and handles numerical features of geological data such as nonlinearity and the 
proportional effect .The concept of scale-dependent transformations will be investigated. The ideas behind 
the Uniform Conditioning technique (which is one of the Gaussian techniques) will be considered to build 
geostatistical models that incorporate data collected from different scales. The name uniform conditioning 
comes from the conditioning of one scale estimation to preliminary other scale estimation. The idea of scale 
dependent transforms is used in the technique of Uniform Conditioning. The same ideas are used in the 
techniques of disjunctive kriging and the discrete Gaussian model. The essential idea is to fit the transform 
with Hermite polynomials and adjust coefficients according to scale.  Hermite polynomials are used in 
stochastic modeling because they provide flexibility in transferring a variable with skewed distribution into 
a Gaussian variable.  The Hermite polynomials are based on the Gaussian density function (GDF)  

 

The Hermite polynomials are defined as the derivatives of the density function: 

 

The Hermite polynomials can be standardized by the division of   , by doing so we arrive at the 
Rodrigues Formula: 
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Where  Hp(y) is the Hermire polynomial of order p, g(y) is the probability of the y value for standard 
normal distribution.  The first two Hermite polynomials are: H0(y)=1  , H1(y)=-y.  Higher orders can be 
found by applying the recursive formula: 

 

The Hermite polynomials provide the flexibility to transfer a variable from skewed distribution  to a 
Gaussian distribution. This can be achieved by introducing a non linear function  that establishes a 
bijective correspondence between the random variable Z and the Gaussian random variable Y: 

 

In practice the anamorphosis    will be fitted to the data 

 

Then the transfer of a variable with a skewed distribution to Gaussian variable and back can be achieved. 

 

Where  = anamorphosis coefficient for a given order p, = Hermite polynomial for a given order p, 
= the normal score value of data point z(u).  The variance of each polynomial is 1 and they are 

independent so that means the variance of   equal to the summation of the squared anamorphosis 
coefficients, that is 

 

Then, a change of support coefficient (r) can be introduced to account for the change of support from one 
scale to another scale. 

 

By calculating the value (r) the distribution of scale other than the data scale can be determined.   

Vision on how multi-scale modeling could proceed 

Assume that we have data from three different scales, seismic, well log and core samples, the probability 
density function (PDF) can be can be established. Figure 2 shows a hypothetical PDF sketch for three 
different types of data. The red PDF represent data collected from large scale (seismic), The yellow PDF 
represent data collected from a smaller scale (well log) and the blue PDF represent data collected from 
small scale (core smaples).   
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The aim is to develop a methodology that can provide mapping of point variable Z to the Gaussian variable 
Y and vice-versa for different scales. Figure 3 shows a hypothetical sketch of the target chart.  Figure 4 
shows a flow chart of how developing a methodology for multi-scale reservoir heterogeneity and 
uncertainty modeling can be achieved. First a scale dependent transform methodology for data at different 
scales coming from variety of sources has to be devolved. Then a methodology to simultaneously process 
all the transformed data has to be developed. Co kriging and/or block kriging under multi-Gaussian model 
can be used to develop a methodology to simultaneously process all the transformed data. The output of 
this process is the prediction of a conditional mean and conditional variance at unsampled location. At this 
stage a conditional distribution at unsampled location can be generated in Gaussian units, it then can be 
back transformed to obtain a scale dependent conditional distribution in original units which has no 
artifacts, no biases and handles numerical features of geological data such as nonlinearity and the 
proportional effect. 
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Table 1. Measurements at different scales. 
Type Level Measurement Scale Measurements 

Micro Pore ~Millimetre 
Pore geometry 

Grain size 
Mineralogy 

Macro Core ~ Centimetre 
K,kr,Ø,Pc 
Wetability 
Saturation 

Mega Grid block ~Metre Logs 
Single well tracer 

Giga Interwell ~Kilometre 
Well test 

Surface seismic 
Interwell tracer test 

 

 
Figure 1. Upscaling , downscaling concept. 

 

Figure 2. Hypothetical distributions for data from different scales. 
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Figure 3. Mapping of point variable Z to the Gaussian variable Y 

 

Figure 4. flow chart of a methodology for multi-scale reservoir heterogeneity and uncertainty modeling. 
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