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Experimental Variogram Calculation using Bernstein Polynomials 
 

John Manchuk and Oy Leuangthong 
 

Inference of the variogram commonly relies on the method-of-moments approach to obtain an experimental 
variogram, on which variogram modeling is based.  Conventional sampling practice leads to a set of 
irregularly spaced data that is available for variogram calculation; this necessarily requires some binning 
of the paired data to obtain reliable estimates of the variogram.  For some software, this grouping of data 
pairs depends on the specified lag and angle tolerances, and bandwidths.  We can consider this as one 
form of smoothing of the h-scatterplot for reliable inference.  This paper proposes an alternative smoothing 
approach for improved variogram estimation; rather than binning data, we propose to interpolate the 
variogram cloud directly.  Bernstein polynomials can be used to infer a multivariate density function from 
a set of sample data.  We can apply this approach to the variogram cloud, which consists of the 
experimental variogram and lag vectors h, and for any lag of interest h0, we use the multivariate densities 
to calculate the covariance and determine the corresponding variogram value.  This permits inference of 
the experimental variogram in any direction and at any lag not beyond the extents of the data. 

Introduction 

Acceptability of estimation via Kriging is strongly dependent on the variogram, which describes the spatial 
correlation of a random variable.  Acquiring the best estimate of the true variogram is an important 
component of geostatistics.  When a substantial amount of sample data is available and those samples 
adequately partition the domain of interest, calculation of the experimental variogram directly is a good 
estimate of the correct variogram.  However, when sample data are sparse, little information is available in 
any given direction for which the experimental variogram is to be calculated.  Data and directions must be 
mixed to obtain any insight in regards to directional variograms – in the worst case it may only be possible 
to obtain an omnidirectional isotropic variogram.  Practitioners may be required to use analogs or other 
similar phenomena to infer a variogram. 

For sparse data, mixing of directions to infer the variogram is needed to obtain an adequate number of 
sample pairs and lag separations for a particular direction.  A common technique is used in the GSLIB 
program for variogram calculation of irregularly spaced data, gamv (Deutsch and Journel, 1998).  For a 
particular lag, data are binned based on tolerances of a spherical coordinate system.  In cases of sparse data, 
tolerances must be set large to obtain a reasonable estimate, which approaches the omnidirectional case. 

A more robust method of mixing directional information is developed.  It involves modeling the 
distribution that is defined by the experimental variogram.  The distribution is modeled using Bernstein 
polynomials: a type of non-parametric function interpolation (Bernstein, 1912; Lorentz, 1986).  Once the 
model is obtained, it is possible to calculate an experimental variogram in any direction and for any lag 
distance within the sample data domain.  After developing some theory on Bernstein polynomials for 
distribution modeling, the distribution defined by the variogram will be described.  This will be followed 
by two examples involving sparse data in two dimensional space and a third applying the method to 
variogram map generation. 

Bernstein Polynomials 

Bernstein polynomials are a form of non-parametric function interpolator.  They have several amenable 
characteristics for modeling distribution functions including non-negativity, free of boundary bias, 
differentiable and integrable, and monotonic.  Bernstein polynomials have been applied to modeling 
univariate distribution functions (Kakizawa, 2004; Babu, Canty, and Chaubey, 2002; Petrone, 1999) as well 
as multivariate distributions (Sancetta and Satchell, 2004; Sancetta, 2007; Kolev, Anjos, and Mendes, 
2006). 

Any continuous function defined on the interval [0,1] can be approximated by a sequence of Bernstein 
polynomials.  Various transformations exist for functions that do not meet this condition, for example (1), 
(2), and (3). An approximation to a function f(x) by Bernstein polynomials of degree n, Bn(f ; x), with x in 
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[0,1] is given by (4). Bn also interpolates the endpoints of the interval being approximated: Bn(f ; 0) = f(0) 
and Bn(f ; 1) = f(1).  Each Bi,n(x) in (4) are referred to as basis functions. 
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The underlying function f must be known at x = (i / n), i = 0,…,n.  For purposes of density function 
estimation, the densities for each x = (i / n) could be calculated with a histogram.  The density for any other 
x would be approximated by Bn(f ; x).  For a multivariate function of d dimensions defined on the [0,1]d 
hypercube, the approximation is defined by (5).  By estimating f using a multivariate histogram, Bn(f ; 
x1,…,xd)  approximates the density for any vector x = (x1 x2 … xd). 
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Bernstein polynomials can be used to model cumulative densities as well.  Assuming the cdf is 
differentiable, Bernstein polynomials can be used to model the integral of the density function defined by f.  
The previously mentioned properties of Bernstein polynomials are important: 

Non-negative: if f is positive on [0,1], Bn(f ; x) is also positive: Bn is a monotone operator: 

 0 1 0 ( ; ) 1nf B f x≤ ≤ → ≤ ≤  (6) 

Differentiable and integrable: if f is positive on [0,1], its integral is monotonically increasing on [0,1] and 
the integral of Bn(f ; x) is also monotonically increasing. For a proof see Phillips (2003).  This is stated in 
terms of derivatives: 

 0 ( ; ) 0nf B f x′ ′≥ → ≥  (7) 

The integral of (5) is required for a multivariate cumulative distribution model.  Because each basis 
function depends only on one xk, integration can be done independently for each variable by (8) where 
βi,n(x) represents the integrated basis functions. The result is (9) where B has been replaced by β in the 
product and the sums start at 1 rather than 0.  An additional advantage of the multivariate Bernstein 
polynomial model is that conditional distributions are accessible.  The conditional distribution in terms of a 
particular variable xj is accessible via Bayes law (10).  Note that x(j) denotes x excluding element j. 
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Constructing a multivariate distribution using Bernstein polynomials amounts to choosing the number of 
known points per dimension, nk, k = 1,…,d, and calculating the density at each point x = (i1 / n1, i2 / n2,…, id 
/ nd), ij = 1,…,nj, j = 1,…d.  Densities can be calculated using any technique such as histograms or kernel 
density estimation.  Multivariate histograms have the advantage of sparsity, which is ideal for problems 
involving several variables and a large number of samples.  For example, a problem consisting of 5 
variables and 100 points per dimension involves 1005 or 10 billion floating point numbers.  However, most 
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points would be characterized by zero density.  For any histogram and a sample size of N, there will be at 
most N non-zero densities. 

Experimental Variogram Distribution 

Calculating an experimental variogram, ˆ( )γ h , is accomplished by (11) where h = (r, θ, φ) is the vector in 
spherical coordinates separating two samples, z(ui) and z(uj), u = (ux, uy, uz), and N(h) is the total number of 
samples separated by h.  Spherical and Cartesian coordinate systems are defined by (12).  For irregularly 
spaced data, the condition ui – uj = h must be relaxed: tolerances, ε, are placed on h in (13) such that an 
adequate number of pairs N(h) can be obtained for the calculation.  Specification of ε imparts tolerances on 
the direction and magnitude of h. 
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For sparse data, ε may have to be set large to adequately characterize the experimental variogram leading to 
substantial mixing of directions and distances.  For a particular h, the set : i jS − ∈ ±u u h ε characterizes a 
bivariate distribution conditional to h with variables Z[u] and Z[u + (h ± ε)] from which the variogram is 
calculated.  Without considering a specific lag and tolerance, the full set, S: ui – uj, specifies a multivariate 
distribution with variables h, Z[u], and Z[u + h].  In three dimensional space the distribution would be five 
dimensional: r, θ, φ, Z[u], and Z[u + h].  This concept can be illustrated with a one dimensional example 
where data may be available from along an exploration drillhole or well.  Ten synthetic data are defined 
along the x coordinate direction with positions and values specified by Table 1.  The multivariate 
distribution is defined by h = |xi – xj|, Z(x), and Z(x + h).  Absolute values of h are considered in this 
example because the experimental variogram is an even function.  In higher dimensions, this symmetry is 
handled as hij = -hji: hij = ui – uj.  In this example, there are a total of 100 pairs characterizing the 
multivariate distribution.  To calculate the experimental variogram as in (11) for a particular h ± ε, all pairs 
within the domain defined by {h ± ε, Z[x], Z[x + (h ± ε)]} are identified and used in (11).  This is done with 
h ± ε = [0,5) and h ± ε = [5,10) for the example in Figure 1.  The associated standardized experimental 
variogram values are 0.29 and 1.21 respectively. 

Table 1: Synthetic data for one dimensional example 
x 1 4 6 11 15 16 18 21 25 29 

Z(x) 2 2 4 6 11 14 13 1 3 0 
 

 
Figure 1: Variogram cloud (left) and experimental bivariate plots 
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Rather than specifying tolerance parameters to acquire an acceptable experimental variogram, the 
multivariate distribution can be modeled with Bernstein polynomials.  The cloud defined by h, Z[u], and 
Z[u + h] must first be transformed to the [0,1]d hypercube, where d = 5 for 3( )Z ∈u .  Z[u] is transformed 
according to (1) where the minimum and maximum of Z are determined from the sample data (14).  
Transformation of the spherical coordinates is dependent on the direction, (θ0,φ0), being explored.  
Bernstein polynomial interpolation was not designed for periodic coordinate systems; however, the space 
can be adjusted to accommodate this.  The system is first rotated so that θ0 is zero degrees.  Angles for each 
ui – uj pair are calculated in reference to θ0 and made to range from    -π/2 to π/2.  Angles in quadrant 1 
remain unchanged, quadrants 2 and 3 are reflected into quadrants 4 and 1 respectively, and quadrant 4 
angles are reduced by 2π.  Reflections are permitted because the variogram cloud is an even function.  A 
similar transformation is used with φ0 as the reference.  Instead of being set to zero, φ0 is set to π/2 and 
calculated φ range from 0 to π.  These transformations are supported by Figure 2.  Afterwards, θ and φ are 
changed to [0,1] according to (15) and the radius r according to (16).  Transformed variables will be 
denoted with a tilde overbar. 

 
Figure 2: Spherical coordinate transformations 

 ( ) ( )( ) ( ) min{ } / max{ } min{ }z z Z Z Z= − −u u  (14) 

 { } { }, , / 1 / 2θ ϕ θ ϕ π= +  (15) 

 / max{ }r r r=  (16) 

A multivariate histogram is calculated for the cloud defined by h , [ ]Z u , and [ ]Z +u h .  Frequencies 
correspond to the values of f(·) in (5) or (9).  Parameters required from the user are the number of bins to 
use per dimension for the multivariate histogram.  For three dimensional data there are four parameters to 
choose: the number of bins to partition θ, which is analogous to an azimuth tolerance; the number of bins to 
partition φ, which is analogous to a dip tolerance; the number of bins to partition the radius, similar to a lag 
tolerance; and the number of bins to partition Z.  The first three create bins in a spherical coordinate system 
and the last creates two dimensional Cartesian bins in the Z[u]Z[u + h] plane (Figure 3).  Within this plane 
and for a particular direction and lag, Bernstein polynomials interpolate a bivariate density function from 
which a covariance, thus a variogram, is calculated. 

Calculating the experimental variogram for a particular direction first requires transformation of the vector 
into the same space as the distribution via (15) and (16).  The [0,1]2 plane that represents Z is then sampled 
using a regular grid of points, where each point represents a pair ( , )u u hz z + .  Letting 0 0[ , , , , ]u u hr z zθ ϕ +=x  
and using (5) along with the multivariate histogram frequencies, f, calculated previously, an interpolated 
density is determined.  If the set of densities for the full grid of points is denoted wij(x) and the inverse of 
(14) is used to map ( , ) ( , )u u h u u hz z z z+ +→ , then the variogram is calculated using (17), where h0=[θ0,φ0,r] 
and the covariance, C(h0), is the usual weighted covariance calculated for the grid of w and z values. 
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 ( ) { } ( ) 2
0 0 0ˆ 1 Cov , / 1 ( ) / ( )u u h u u hz z Cγ σ σ σ+ += − ⋅ = −h h h  (17) 

Using this methodology the distribution for the previous example was fit and the experimental variogram 
calculated for h=2.5 and h=7.5.  Experimental values were 0.51 and 1.20 respectively using a multivariate 
histogram with 20 radius bins, 100 z bins, and a 51 by 51 grid to sample wij and zij for (16).  Visualization 
of the three dimensional distribution is done with volume rendering (Figure 4) and the density functions at 
the two prescribed h values are shown in Figure 5. 

Measuring Information Content 

The importance of experimental variogram points from gamv are commonly measured using the number of 
Z[u]Z[u+h] pairs involved.  A similar measure can be constructed for experimental variograms calculated 
using Bernstein polynomials.  For a particular direction, each experimental point is calculated with the 
same resampling grid for Z, so the number of pairs may not be used.  However, each resampled point is 
interpolated from all the available data and receives weights calculated from the basis functions in (5).  
Summing the weights that all data have received for a resample point is a measure of its information 
content.  The sum of all information content values for an entire resampling grid provides a measure of 
significance for the associated experimental variogram point. 

 

 
Figure 3: Multivariate histogram bin geometry 

 
Figure 4: Three dimensional density function 
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Figure 5: Experimental bivariate plots 

Examples 

To illustrate the usefulness of interpolating the distribution defined by the full variogram cloud when data 
is sparse, two examples will be covered and compared to existing methods for determining experimental 
variograms that utilize (11) and a third example applying the method to variogram map generation.  
Examples are two dimensional and consist of data that is sparse relative to the field they represent.  In the 
first example, a model was synthetically created with a known spherical variogram (Table 2) and a set of 76 
random samples was extracted from the model (Figure 6).  The total field size is 15000 square and samples 
have a minimum spacing of roughly 1500.  Very few pairs exist below this spacing.  Inferring the short 
range structure of variograms is important, where the short range in this example is considered < 1500. 

Table 2: Variogram for first synthetic example 
Structure Type Variance Azimuth Major Range Minor Range 

1 Nugget 0.0    
2 Spherical 0.37 45 3000 1000 
3 Spherical 0.63 45 3000 3000 

Experimental variograms were calculated using gamv for the sample set.  Directions explored were 45 and 
135 degrees.  For gamv, the lag size was 600 and tolerance 300.  Referring to Figure 6, the second and third 
points for the experimental variogram at 45 degrees are characterized by only one pair.  Variograms 
calculated with the Bernstein polynomial method (gamest) used the bin parameters in Table 3 and 20 lags 
of size 300.  This model infers short range information by mixing what is known for all available h values 
in the data set not including pairs at h = 0. 

Table 3: Example 1 bernstein polynomial fit parameters 
Direction Radius bins Azimuth bins Z bins Resampling grid 

45 20 70 200 20×20 
135 20 20 200 20×20 

The resulting experimental variogram using the Bernstein polynomial method is smooth and allows 
calculation of γ(h) for any h.  Although the results are not identical to the true underlying variogram, which 
should be considered unavailable, several components of a variogram can be interpreted from this first 
example: a nugget effect; range values; the possibility of a significant trend where the variogram extends 
above the sill; and the variogram shape.  One might interpret a variogram with a nugget effect of 0, two 
spherical nested structures, and ranges of 2000 and 3000 at 45 and 135 degrees respectively as well as a 
slight trend in the 45 degree direction.  This information would be difficult to ascertain from the gamv 
experimental variograms, especially if the points characterized with only one pair were disregarded. 

The second example uses sample data from Deutsch and Journel (1998).  In one of the examples on pages 
257-259, the first 97 samples of cluster.dat (97data.dat) are used to calculate an experimental variogram, 
which is shown on page 258, and the exhaustive 50 by 50 grid of data (true.dat) were used to produce the 
variograms on page 259.  Parameters for gamv and gam were set identical to those in the text, the only 
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difference being that standardized variograms are used here.  Data and results are shown in Figure 7.  A 
comparison of the Bernstein polynomial variograms with the exhaustive data are shown in Figure 8. 

Generating the Bernstein polynomial fit was done using bins parameters in Table 4.  In Figure 7 and Figure 
8, the nugget effect and ranges selected using the Bernstein polynomial fit would be more accurate than 
those selected using the experimental variograms when compared to the exhaustive results.  This is 
especially true for the nugget effect.  The zonal anisotropy that is shown in Figure 8 is not captured by the 
sample set, so is not represented by the results of either the gamv or the Bernstein methods. 

This last example applies the Bernstein polynomial method to generating a variogram map using the data 
from the previous example.  Because the directional information is interpolated in spherical coordinates, it 
is appropriate to create a variogram map with the same coordinate system.  A structured grid of r, θ, φ 
values is used to evaluate the experimental variogram (Figure 9).  Each value is calculated exactly as in the 
previous two examples with a resampling grid for Z[u] and Z[u+h].  Calculating a reasonable variogram at 
this resolution would be difficult for the traditional method of moments. 

 

Table 4: Example 2 bernstein polynomial fit parameters 
Direction Radius bins Azimuth bins Z bins Resampling grid 

0 50 170 500 20×20 
90 50 170 500 20×20 
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Figure 6: Example 1 samples (left) and variograms 
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Figure 8: Exhaustive experimental variograms and Bernstein models 

 
Figure 9: Variogram map as calculated on a polar grid (left) and the contoured equivalent 

Conclusions 

Inferring the correct variogram in a geostatistical study with sparse data can be difficult.  In some cases, 
existing methods are unsatisfactory.  This paper introduced a new method of mixing available information 
to obtain more interpretable experimental variograms.  A non parametric density estimation method that 
uses Bernstein polynomials was used to fit the full variogram cloud of a sample data set.  Then the 
variogram value can be calculated for any direction and any lag within the extents of the data.  Two 
examples show this method can be used to identify structural elements such as the nugget effect, range, 
trends, and anisotropy and in a more interpretable way.  A third example applied the method to produce a 
higher resolution variogram map than would be obtainable using the traditional method of moments 
approach.  Non parametric methods are promising for variogram interpretation and can result in more 
appropriate variogram models. 

References 
Babu, J., Canty, A. J., Chaubey, Y. P., 2002, Applications of Bernstein polynomials for smooth estimation of a distribution and density function: Journal 
of Statistical Planning and Inference, No. 105, p. 377–392 
Bernstein, S., 1912, Démonstration du théorème de Weierstrass fondée sur le calcul des probabilities: Comm. Soc. Math. Kharkov 13, 1-2 
Deutsch, C. V., and Journal, A. G., 1998, GSLIB: Geostatistical software library and user’s guide: Oxford, 384 p. 
Kakizawa, Y., 2004, Bernstein polynomial probability density estimation: Journal of Nonparametric Statistics, Vol. 16, No. 5, p. 709–729 
Kolev, N., Anjos, U., and Mendes, B. V., 2006, Copulas: A review and recent developments: Stochastic Models, Vol. 22, No. 4, p. 617 – 660 
Lorentz, G. G., 1986, Bernstein polynomials: American Mathematical Society, 134 p. 
Petrone, S., 1999, Bayesian density estimation using Bernstein polynomials: The Canadian Journal of Statistics, Vol. 27, No. 1, p. 105–126 
Sancetta, A., 2007, Nonparametric estimation of distributions with given marginals via Bernstein–Kantorovich polynomials: L1 and pointwise 
convergence theory: Journal of Multivariate Analysis, No. 98, p. 1376 – 1390 
Sancetta, A., and Satchell, S., 2004, The Bernstein copula and its applications to modeling and approximations of multivariate distributions: Economic 
Theory, No. 20, p. 535–562 


