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Guaranteeing Proportions with Indicator Kriging 

John G. Manchuk and Clayton V. Deutsch 
 

Order relations are a common problem with indicator methods in geostatistics.  Estimated proportions are 
often negative and rarely sum to unity.  Various methods exist to adjust results to meet these constraints; 
however, the objective of such methods is not to minimize the estimation variance.  It is possible with 
optimization methods to estimate a vector of proportions that are all positive, sums to unity, and has the 
property of minimum estimation variance.  Lagrange multipliers are used to combine constraints into the 
variance equation and a combinatorial technique is used to determine which multipliers are needed to 
obtain feasible solutions.  Despite the increased complexity, execution time is not unreasonable for a 
limited number of categories. 

 

Introduction 

There is no intrinsic property of indicator kriging that constrains estimated proportions to be positive and 
have unit sum.  Occurrences where indicator kriging actually produces proportions meeting these 
constraints are purely random and highly unlikely.  However, the deviation from these constraints is 
typically not substantial so quick fixes are not immediately rejected – negative proportions are typically set 
to zero and those remaining are standardized.  Fixes of this nature are not necessarily optimal.  As with any 
form of kriging, the underlying objective when dealing with indicators is to minimize the error variance.  
This objective should be maintained while searching for the constrained solution to indicator kriging. 

An identical problem to this has been encountered with compositional data, where a set of variables that are 
all positive sum to a whole.  Each variable is a percentage or proportion of the whole composition.  The 
method of compositional kriging was developed, initially by De Gruijter, Walvoort, and van Gaans (1997) 
and reiterated by Walvoort and De Gruijter (2001).  Compositional kriging can thus be applied to indicator 
kriging where the estimates for each indicator class correspond to probabilities that must be positive and 
sum to unity. 

In this paper, the methods developed for compositional kriging are applied to categorical data.  Constraints 
are developed for simple indicator kriging and the resulting system is solved with quadratic programming 
(Papadimitriou and Steiglitz, 1998; Boyd and Vandenberghe, 2004).  The algorithm has been embedded 
within a version of sequential indicator simulation (Deutsch and Journel, 1998) for analysis. 

 

Background 

Any form of kriging forms a quadratic program (QP).  The objective is to minimize a function with a 
quadratic term, i.e. the estimation variance, under the constraint of a linear system of equations.  This 
minimization problem is given by (1) where σE

2 and σ2 are the estimation variance and the global variance 
respective, Cij is a matrix of covariance values between two samples at locations xi and xj, λi is the solution 
vector or kriging weights, and ci is a vector of covariance values between the sample at xi and the location 
of interest, x.  λTCλ is the quadratic term. 
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This is a special case of QP since its solution is determined by solving the system C cλ = .  However, for 
indicators the solution to (1) is not necessarily valid.  Consider simple indicator kriging with M categories 
and N sample data.  The estimate, ( )k xφ∗ , is a probability that the value at x belongs to class k (2), where 

( , )iI x k  is the membership of data xi to class k and φk is the global proportion of class k.  All k=1,…,M 
estimates must therefore be positive and sum to unity. 
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A typical implementation of indicator kriging would solve (1) for each class k.  M systems of equations of 
the form (3) would be built and solved, the resulting solution being substituted into (2) giving a vector of 
estimates φ*.  There is no intrinsic property of this method that ensures the sum of φ* is unity and that each 
φk

* is positive and between zero and one.  The QP must be reformulated with these constraints in mind. 

 , 1,...,k k kC c k Mλ = =  (3) 

For simple indicator kriging, the constrained QP must be reformulated with the constant sum constraint (4) 
and positivity constraint (5).  A constraint to ensure φk

* are less than one is not required since the (4) and 
(5) together ensure this. 
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These constraints may be simplified into (6) and (7). 
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The optimal solution to (1) with these additional constraints can be solved using Lagrangian duality, where 
the objective function is reformulated with Lagrange multipliers associated with each constraint.  If ψ and 
ξk, k=1,…,M are the multipliers associated with each constraint, the minimization problem becomes (8).  
Differentiating in terms of λk gives (9) and in terms of each of the multipliers recovers the constraint 

functions f0 and fk, which are minimized when f0=0 and when ( )( , ) T
k k kI x k φ λ φ− = − for fk. 
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Solving (8) is done by setting (9) to zero and the result can be formulated as a system of equations for each 
category k.  Because ψ is in all k systems, they must be merged into a single system of the form (10) with k 
blocks, where sk is the N×1 vector I(x,k)-φk, and each Ck is an N×N block.  This system cannot be directly 
solved as is.  The inequality constraints associated with ξk may be active or inactive: If the solution vector 
[λ1,…,λM,ψ]T is feasible, such that all equality constraints are met, and fk = 0, then constraint fk is active.  If 
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fk > 0, it is inactive.  So the system in (10) only requires an inequality constraint if φk
* is negative.  Solving 

(10) therefore involves determining which set of active inequality constraints solves (8), where an empty 
set is valid.  This is an NP-complete optimization problem, that is, a Non-deterministic Polynomial-time 
problem for which no polynomial time algorithms can solve. 

 

1 1 1 1 1
2 2 2 2 2

1 2

1 11

2 22

0 0 0 0
0 0

0 0
0 0 0 0

0 0 0 0
0 0 0

0
0 0

0 0 0 0 0

M M M M MT T T
M

T

T

T
M MM

C s s c
C s s c

C s s c
s s s
s

s

s

λ
λ

λ
ψ
ξ φ
ξ φ

ξ φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢
⎢ ⎥ ⎢ ⎥ ⎢−⎣ ⎦ ⎣ ⎦⎢ ⎥⎣ ⎦

⎥
⎥

 (10) 

A simplified version of (10) will be referred to in the remaining paper and is given by (11). 
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Methodology 

The solution to (10) is a combinatorial optimization problem.  First, the system is solved assuming all fk are 
inactive.  If the resulting φk

* ≥ 0, the solution is optimal and estimates sum to unity.  However, if any fk are 
violated then the optimal combination of active inequality constraints that minimizes (8) must be 
discovered.  Like De Gruijter, Walvoort, and van Gaans (1997) and Walvoort and De Gruijter (2001), the 
method of Theil and Van de Panne is used.  Each combination of constraints that must be activated is 
iteratively built into (10).  That with the minimum estimation variance is the optimal combination. 

Pseudo-code for the algorithm is as follows: 

1. Solve 00T ψ
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2. Initialize j = 0; Calculate σ0
2 using (8) 

3. Calculate fk
0 using (7), k=1,…,M 

4. Initialize list L = combinatorial (all 0 0kf < ) and build the set V0: 0 0kf <  

5. If 0V ≠ ∅ , reset σ0
2 large [∅ denotes the empty set] 

6. While L(j) not empty 
a. Increment j 
b. Build S using active constraints in L(j) 

c. Solve 0 0 0
0 0
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d. Calculate j
kf , k=1,…,M and build set Vj: 0j

kf <  

e. If 1andj j jV V V −≠ ∅ ⊆ ignore combination L(j) [⊆ denotes a subset of or equal 

to] 
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f. If 1andanyj j jV V V −≠ ∅ ∉ , update Vj-1 with new active constraints and add new 

combinations to L. 

g. If jV =∅ , Calculate σj
2; if 2 2

0jσ σ< , save [ ] [ ]T T

j
ψ ψ

∗
=λ ξ λ ξ and 

2 2
0 jσ σ=  

7. Return the optimal feasible solution [ ]Tψ
∗

λ ξ  

 

Implementation 

An existing version of sequential indicator simulation (sisim) from Deutsch and Journel (1998) was used as 
a host to the algorithm discussed in the previous sections.  A Gaussian elimination solver that takes 
advantage of the sparse structure of (10) was written for step 1.  For solving the system in step 6.c, the 
upper triangulated left hand side from solving step 1 is retained since it is constant.  Only Sj is updated 
while cycling through L and blocks Sj, Sj

T, and -Φ are incrementally reduced.  The sparse structure only 
exists under the assumption that cross variograms between categories are not involved. 

For the following analyses, the two dimensional data set from the Spatial Interpolation Comparison 97 was 
used for data coordinates.  An arbitrary categorical variable with 5 categories was generated and arbitrary 
variograms assigned to each.  Data will be plotted along with realizations from each version of sisim. 

A run time comparison between the original version of sisim (SIS0) and the version containing the new 
solution method (SIS1) was conducted.  The number of data involved in each system was increased from 2 
to 32 while keeping the grid size and number of realizations to generate constant at 10,000 blocks and 10 
realizations.  It is intuitive that time will increase linearly with increasing grid size while the number of data 
involved is held constant.  The time complexity with number of categories was not explored, but since the 
combinatorial of active constraints grows as 2n, it is reasonable to assume run time would grow to 
impractical proportions with the number of categories.  Results are as expected with the new solver being 
slower (Table 1).  By using efficient solvers, both methods are approximately an O(n2) process; however, 
SIS1 takes roughly 6.6 times longer.  This can be seen in Figure 1. 

 

Table 1: Time comparison 

Number of data 
(n) Time (s), SIS0 Time (s), SIS1 

2 1 3 
4 1 10 
8 4 25 

16 12 77 
32 54 354 
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Figure 1: Execution time curves 

Reproduction of the input proportions is also checked.  Fifty realizations were generated over a 100×100 
cell grid using 20 data for each kriging system.  A plot of realization 10 for each method is shown in Figure 
2, overlaid with the data.  Global proportions from each realization were extracted to compare their 
statistics (Table 2).  Both methods show acceptable reproduction of the global proportions over the fifty 
realizations with no error exceeding 2.7%.  Inconsistent results are obtained when comparing the standard 
deviation of mean proportions for the two methods.  Some cases show SIS0 giving a higher standard 
deviation than SIS1 and vise-versa.  The interpretation is that the correction scheme used in SIS0 to obtain 
positive probabilities and unit sum may result in proportions that would only be achievable by over or 
underestimating the actual kriging variance. 

 

 
Figure 2: Realization 10 from each version of sisim 
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Table 2: Statistics of proportions for each version of sisim 

 Category Target Min Max Mean Standard Deviation 

SIS0 

A 0.07526 0.0504 0.1475 0.08005 0.019803 
B 0.12886 0.1028 0.1956 0.13510 0.022240 
C 0.24666 0.1733 0.3197 0.24769 0.028547 
D 0.38826 0.2787 0.4180 0.36316 0.030676 
E 0.16096 0.1181 0.2632 0.17399 0.028848 

SIS1 

A 0.07526 0.0531 0.1665 0.08355 0.021296 
B 0.12886 0.1019 0.1940 0.13628 0.021666 
C 0.24666 0.1632 0.2999 0.24430 0.027520 
D 0.38826 0.2689 0.4194 0.36147 0.031806 
E 0.16096 0.1217 0.2682 0.17439 0.027702 

 

Conclusion 

A constrained optimization technique, originally developed for compositional data, has been applied to 
indicator kriging.  Constraints to maintain positive probabilities and to ensure estimates sum to unity can be 
incorporated into the systems of equations with Lagrange multipliers.  A combinatorial technique is used to 
determine which constraints must be active to obtain a feasible solution.  Results maintain the premise of 
minimum estimation variance, which is not necessarily maintained for other corrections involving order 
relation problems. 
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