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Exploratory drilling is in most cases the only source of information for ore deposit evaluation and for long 
term mine planning.  This information is subject to sampling and measurements errors; this is an 
unavoidable fact despite the emergence of improved technologies to minimize these errors.  Often, 
information from previous drilling campaigns is also available and must be considered; these tend to show 
greater measurement errors than their more recent counterparts.  Errors are introduced in every stage of 
measurement: sampling, logging, chemical analysis, and so on.  These can be attributed to a variety of 
factors including instrumentation, sampling protocols and/or procedures.   Borehole data typically show 3-
5% error when  good sampling protocols are carried out, and blast hole data can show as much as 10-30% 
error given the nature of the data collection practice.  While these sampling errors are unavoidable, we 
can minimize and account for these errors in our resource models.  Geostatistical simulation aims to 
account for spatial variability in the attribute and obtain a statement of uncertainty of the resource/reserve 
as a result of this variability.  Rarely is sampling error considered in this process. For long term mine 
planning, it is typical to assume that the borehole data are accurate at the data locations.  Short term mine 
models rely primarily on blast hole data and once again, the model takes no account of the inherent 
inaccuracies   and imprecision of the data.   Mine plan decisions are made centrally on these resource 
models without integration of these errors.  This paper considers a novel approach to integrate sampling 
errors from different types and sources of data into the simulation process. Simulation using a Gibbs 
Sampler is performed at the sample locations, in order to impose the spatial correlation of the attribute of 
interest and ensure the sampling error is considered. This iterative approach yields multiple realizations of 
possible values at sample locations. At each location, the distribution of simulated values over a large 
number of realizations is distributed around the sampled value with the correct relative variance, given by 
the estimated sampling error. Each realization can then be used to condition a conventional 
estimation/simulation over a regular grid, allowing the easy introduction of the uncertainty in the data due 
to their imprecise nature. 

Introduction 

Sampling errors are inevitably attached to most measures of the grades of elements of interest in the mining 
industry (Sinclair and Blackwell, 2000; Dominy and others, 2002; Stoker and Gilfillan, 2001). Good 
practice can minimize the impact of sampling errors through proper procedures of quality assurance and 
quality control (Gy, 1982; Pitard, 2000; Magri and Ortiz, 2000). However, in many mining projects, 
information from older campaigns is available and should be used even with its associated sampling error. 
This error can reach relatively high values, but the sample set still provides relevant information about the 
spatial continuity and local trends of the data, so it must be included in the resource/reserve modelling 
(Emery and others, 2005).  

Including sampling errors in estimation and simulation models has been addressed by several authors. 
Accounting for qualitative interval information through soft kriging (Journel, 1986) or fuzzy kriging 
(Diamond, 1988, 1989) is possible to incorporate soft information. Multigaussian kriging and indicator 
techniques also provide amenable frameworks to impose inequality constraints (Freulon, 1993, 1994; 
Goovaerts, 1997). Nonetheless, integrating information from several campaigns with different sampling 
errors is still a challenge. In this paper, we discuss a methodology to account for the sampling error locally, 
preserving the spatial correlation of the deposit, in a simulation context.  

Stochastic simulation approaches honours the conditioning data reproduction at their respective locations; 
this translates to a local variance equal to zero and a mean of the simulated values equal to the conditioning 
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data value at all the data locations. Thus, there is no uncertainty at the conditioning data locations and the 
data values are considered as “true” data. 

On the other hand if the conditioning data is assumed to have a certain degree of uncertainty with some 
known global relative error (GRE) this characteristic of the data should be reproduced in the resulting 
simulated model as well as the spatial correlation. The uncertainty of the conditioning data can then be 
transferred to the simulated model. 

The proposed approach is to simulate as many datasets as the number of realizations that are required of the 
model. All the datasets should reproduce (1) the spatial correlation of the initial data in expected value and 
(2) the expected variability at the sample locations due to sampling error.  Only one variogram model is 
required to simulate all the realizations with the different simulated datasets.  

The proposed algorithm draws samples at each data location such that the provided measure of sample 
error is reproduced.  One possible approach to satisfy this objective is to randomly draw samples from a 
normal distribution centered about the data value with a variance determined from the sampling error.  This 
random drawing at each data location should yield acceptable results when the sample error is relatively 
small; however in the case of integrating data from different sampling campaigns where the sample error 
increases with vintage of data, an uncorrelated sampling will degrade the spatial continuity characterized by 
the variogram.  We propose an alternative approach that samples from each location to reproduce the 
sample error such that the correlation structure of the attribute is preserved.  For this task, we draw samples 
from the cumulative distribution function (cdf) at the locations of the conditioning data following a random 
path and conditioning the distributions to all current simulated values at sample locations. This is repeated 
over many iterations, and only samples that approach the target global sampling error (GRE in relative 
terms) are accepted. The algorithm stops when this target is reached. 

We show a comparison between the spatial uncorrelated random sampling and the spatial correlated 
approach. In both cases the local errors are honoured, but the uncorrelated case leads to a degradation of 
spatial correlation at the short range. 

Global Sampling Error 

A number of different variability measures could be used to characterize the sampling error. We could 
consider different sampling distributions at every location; however, it is common to consider a global 
sampling error that affects the entire set of samples.  This is often reported as a relative error, where the 
variance is proportional to the squared mean at each sample location.  For this approach, we use the Global 
Relative Error (GRE) to characterize the sampling variability.  The GRE is defined as: 
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Where Zo are the original data values, Zs are the sampled values of the alternative simulated datasets, and n 
is the number of sample locations.  It should be noticed that this definition implies that simulated values 
will be drawn around the actual measured value, which we know has an error attached. One could 
implement other approaches to account for sampling error variability, but these are not explored in this 
study. 

Proposed Methodology 

The spatially correlated approach simulates the dataset sample values by means of a Gibbs Sampler. The 
idea is to compute simulated values from the conditional cumulative distribution functions (ccdf) at each 
sample location of the initial dataset, following a random path. Two main objectives are considered for 
this approach: (1) to reproduce the experimental variogram in expected value (Eq. (2)), and (2) to 
reproduce the relative error. 

 ( ){ } ( )0ˆ ˆsE γ γ=h h  (2) 
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Where ˆ( )γ h  is the experimental variogram, and the subscripts s and o denote simulated and original data 
sets, respectively. 

The second objective of reproducing the relative error has two components.  Firstly, the global relative 
error is targeted (see Eq. (1)); this calculates the relative error within the entire dataset.  Secondly, a local 
relative error (LRE) is also targeted such that the relative error at any one data location is also reproduced 
in expected value, that is: 
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Where L is the number of realizations of datasets and this is calculated over all realizations for each sample 
location u. 

The spatial correlation reproduction is imposed by conditioning each distribution function with the current 
simulated sample values at other sample locations and constrained to satisfy both the GRE and LRE. Each 
sampled dataset approaches the target GRE and LRE through iterations, so the resulting datasets match the 
variogram, the GRE and the LRE. 

Since Gaussian simulation is used, the correlated sampling is performed in normal score units (Deutsch and 
Journel, 1998). Therefore, each ccdf can be defined by two parameters (mean and variance) and the GRE 
and LRE comparison is performed after back transformation to original units (where GRE and LRE are 
measured).  

Specifically, the procedure can be summarized as follows: 

1. Define the GRE and variogram of normal scores to be matched 
2. For each realization: 

a. Initialize the algorithm by generating spatially correlated values with unconditional 
simulation. These values are not related to the actual samples taken at data locations.  
Compute the GRE between the current sample values (simulated) and the original sample 
values. 

b. Select a random path to visit each sample location. At each location do the following: 
i. Compute the ccdf of the normal scores via simple kriging. The kriging estimate and 

variance are associated with the conditional mean and variance of the local distribution. 
ii. Draw a simulated value from this distribution by Monte-Carlo simulation 

iii. Back transform the simulated value to original units 
c. Update the value of the GRE (Eq. (1)). If close to the target GRE, keep the simulated value 

and move to the next location; otherwise, reject and draw a new value by going back to Step 
2b(ii), or move on to the next node. 

d. Repeat Step 2b and 2c until the GRE and the variogram matches the target within some 
reasonable tolerance. 

3. Over all realizations, visit each location and check that the target LRE is locally reproduced (Eq. 
(3)). If this is reproduced within some reasonable tolerance, then accept the set of sample data 
realizations and proceed to geostatistical modelling. 

Since the GRE is computed with reference to the actual sampled values, this approach ensures simulated 
values at data locations will be reasonably close to the actual sampled value, and globally the sampling 
error will be honoured. Furthermore, the simulated values are spatially correlated due to their construction 
with the Gibbs Sampler. Many realizations can be computed in this fashion. Each one represents one 
possible scenario of sample values, consistent with the available information, the spatial continuity and the 
sampling error of the drilling campaign. 
 
The sampling algorithm is able to simulate many datasets that on average reproduce the spatial correlation 
of the initial dataset. For different targets of GRE, the dispersion of the experimental variograms of the 
simulated datasets increases proportionally to the GRE target but remains unbiased. 

The sampling algorithm considers the following assumptions: 
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• Relative errors are constant values into campaigns or sub datasets. 
• Sampling errors are interpreted as spatial uncorrelated random processes that lead to the 

increment that lead to the increment of an independent component in the dataset that 
consequently increment the nugget effect in the semi – variogram. 

• The local distributions of the local sample realizations in the dataset are not Gaussian distributed. 

Application 

A synthetic example is prepared to illustrate the implementation of this methodology. Consider an initial 
dataset that consists of 400 data samples that are regularly spaced on an interval of 250m x 250m; this 
regular spacing avoids any clustering effects. The dataset was drawn of one realization of an unconditional 
simulated map with an isotropic variogram. 

The distribution of the initial data is lognormal in original units with a minimum value of 13.73 to a 
maximum value of 4176.34. In order to work with the sampling algorithm, the normal scores equivalent of 
the data is needed. The fitted variogram model of the normal score values is isotropic with the range of 
1200m, which is consistent with the reference variogram of the synthetic data set. 

 ( ) ( )1200ref Sphγ =h h  

A GRE of 30% is arbitrarily chosen and imposed on the initial dataset.  

For comparison purposes, we consider the case of uncorrelated sampling of a local distribution of 
uncertainty that is defined based on the GRE.  Locally, the distributions are assumed to be normally 
distributed (which is consistent with a distribution of errors), with a mean given by the original value and a 
variance that is a function of the target GRE value: 

 
2 2 2( ) ( )i o iZ GREσ = ×u u  (4) 

Multiple realizations of the dataset can be simulated in this uncorrelated fashion while still honouring the 
target GRE.  For comparison, we generate 50 realizations.  Consistency requires that we also impose 
reproduction of the local relative error (LRE), and for this example, the LRE is constrained to be between a 
minimum and a maximum of 0.29 and 0.31 respectively (±0.01). Only samples that satisfy this condition 
are accepted. 

Both the uncorrelated sampling and the proposed correlated sampling procedure are compared based on the 
resulting GRE and the experimental variograms calculated using the resulting simulated datasets.  Figure 2 
shows the comparison of the GRE reproduction from both approaches, as well as the reproduction of the 
mean of the distribution over multiple realizations of the sample dataset.  In both cases, the GRE is well 
reproduced; this is expected by construction. 

The reproduction of the variogram is verified by checking the normal scores variogram since this is the 
variogram used in the correlated sampling approach.  This requires that each simulated dataset is normal 
score transformed.  Figure 3 shows the results of this check for both the uncorrelated and the correlated 
sampling approach. In both cases, the overall structure of the experimental variogram is honoured on 
average by the 50 simulated datasets; however, at short range we can clearly see departures from the 
original experimental variogram values in the uncorrelated sampling case.  This artificial inflation of the 
nugget effect is significant in cases where the GRE is large (as is the case here).  The proposed correlated 
sampling approach shows good reproduction of the experimental variogram over all ranges. 

Figure 4 shows the local distributions for 50 possible samples at three locations selected for being at the 
low, median and high data ranges of the initial data set.  They all have the distribution of sampled values 
that satisfy the local mean, GRE and LRE sampling conditions as well as the spatial correlation feature.  
Unlike the uncorrelated sampling approach, these distributions clearly show that the shape of the 
distribution is irregular and need not be Gaussian. 
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Transfer of Uncertainty 

Having characterized the variability of the sampling values at each data location, the next natural step is to 
transfer this uncertainty into the numerical models of the corresponding geological unit or domain. A 
straightforward approach to transfer uncertainty in the data values is to directly infer each simulated model 
using one of the simulated dataset using correlated sampling.  For example, for 100 simulated models the 
input data should consist of 100 different datasets that honour the spatial correlation and the target GRE 
and LRE values. In this way, the uncertainty due to the sampling error of the input data is transferred to 
the rest of the simulated locations in the model. 

Figure 5 shows the comparison between the conventional approach of conditioning all realizations to the 
original dataset and the proposed approach of transferring sample error through to the simulated model.  
The distributions in the global mean and standard deviation are more uncertain than the conventional 
approach.  This is a consistent and expected result since sample error implies uncertainty in the sample 
data, thus the conditioning data are more uncertain and this is inevitably transferred to the simulation 
model. 

Conclusions 

Sampling variability is a property of the datasets that has to be considered and reproduced in the models 
unless it is assumed negligible. It has the same importance as the sample values of interest in the dataset.  
The proposed approach of constructing multiple realizations of the dataset reproduces the global relative 
error, as the measure of sample error, and the spatial correlation of the data.  An uncorrelated sampling 
scheme artificially inflates the nugget effect and degrades the spatial structure at short ranges; this is 
avoided using the correlated sampling scheme proposed in this paper. 

The transfer of uncertainty in the sample dataset through to simulation is straightforward. Greater 
uncertainty in the conditioning data necessarily translates to greater uncertainty in the simulation results.  
This was shown in terms of the global mean, standard deviation and also in variogram reproduction.  In the 
latter check, greater fluctuation is apparent when we consider sample error in the conditioning information. 
 
The extension of this methodology to include data from different drilling campaigns is simple.  The GRE 
and LRE in the methodology can be imposed for different data sets.  Depending on the vintage of 
information and associated sample errors, we may wish to limit the variogram calculation to be based on 
the most reliable or least-sample-error dataset.  In the instance where multiple drilling campaigns yield 
datasets that show consistent spatial structure, then the merging of these datasets can yield a relatively 
reliable estimate of the variogram. 

Furthermore, while the proposed methodology used the GRE as the metric for sample error, an alternate 
expression to capture sample error could easily be considered. 
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Figure 1, Location map of the initial data (left), histogram of initial values (right) 
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Figure 2, Reproduction of target GRE of 30%: (a) using uncorrelated sampling approach and (b) using 
correlated sampling approach 

 
 

 
Figure 3, Experimental variogram (gray lines) using 50 simulated datasets with 30% GRE: (a) from 
uncorrelated sampling approach, and (b) from proposed correlated sampling approach. Initial experimental 
variogram values are shown as black dots, and the fitted variogram model, shown as black solid line, is 
based on original experimental points. 

 
 

 
Figure 4, Local distributions for the low valued location (left), close to the mean valued location (center), 
and the maximum value location (right) from correlated sampling approach 
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Figure 5, Comparison of simulation results using a single sample dataset (left column) and multiple simple 
datasets (right column): (a) and (b) distribution of global means over 50 realizations (top row), (c) and (d) 
distribution of standard deviation over multiple realizations (middle row), and (e) and (f) normal scores 
variogram reproduction (bottom row). 

 


