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The Lower –Upper Simulation is an important conditional simulation method for several correlated 
variables.  It is efficient for large grids if applied on a block-by-block basis.  For multivariable, a model of 
coregionalization is needed to do the simulation.  Although cross-covariances are the key for integration 
secondary data, modeling of cross-covariance by fitting the linear model of coregionalization (LMC) is 
considered a cumbersome task, which is the reason that the LMC is limitedly used in practice.  An 
approximate model of coregionalization is presented for doing LU with multiple variables.  This short note 
is the start of a Masters level research project. 

Introduction 

Simulated realizations are useful to obtain a realistic picture of spatial variability.  There are many methods 
for modeling multiple variables.  The major drawback is that they are all very computational expensive for 
large grids.  If the simulation is done at a block-support, the speed could be raised a lot.  The Block LU 
simulation is an alternative.  Blocks are considered independently and the computation of recoverable 
reserves is done at an SMU scale. (see references).  This approach locally simulates the grade values via the 
matrix decomposition method (Davis, 1987). 

There could be many variables available in the domain of interest.  The block simulation with multiple 
variables is possible, but requires a positive definite linear model of coregionalization.  A new methodology 
is proposed to use the n direct variograms and the correlation matrix between the n variables.  The 
covariance between different variables may need to be corrected.  A test case is developed. 

Methodology 

The LU method for one variable is as follows: 

• Transform the data to a standard Gaussian distribution 
• Calculate and model the variogram 
• Compute covariance matrix C for the location in the search neighborhood 
• Decompose the covariance via the Cholesky decomposition into a lower and upper triangular 

matrix, where the upper triangular matrix is the transpose of the lower triangular matrix 
U       where      L'=UC L=  

• Now consider a random vector y Lw=  where w is a vector of independent N (0, 1) distributed 
random numbers 

• Back-transform the simulated values to original units. 

Multivariate block LU simulation is obtained by using the LMC.  The method is developed for the joint 
simulation of multiple data locations.  For simplification, say 3 variables, v, u and w.  The covariance 
matrix of data location the grid to be generated and the partition matrix as following: 
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Where 11C  is the covariance and cross-covariance between data points, 
12C is covariance and cross-

covariance between search data points and grid discretization points or grid points.  The 
22C  is the 

covariance and cross-covariance matrix between discretization location. Each sub matrix in 11 12 22, , ,C C C  
contains the covariance among the n v, u, and w data and cross covariance between uv, uw and vw. 
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Where suppose there are p data in the search radius and m data discretization in the grid.  The above 
covariance among the 3 variables is retreived from their cross variogram model. 

The new algorithm needs the new cross variogram model between the variables. It is obtained by multiply 
correlation coefficient and the average of the two direct variogram. 

'
, ' , ' 2

k k
k k k k

γ γγ ρ +
= i

 
But the matrix for LU is not always positive definite, that is the variance must never be negative. The 
covariance function must insure the previous variance will always be none negative. Such we see that the 
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covariance is positive definite. (Journel and Huijbregts, 1978 )  We come up with a method that can fix the 
matrix to ensure the big matrix is always positive definite. 

According to the theorem, a symmetric matrix, say C, is positive definite if and only if all the eigenvalue of  
C are positive. So, when correcting this matrix: 

1. The Krylov subspace methods are used to calculate the approximate minimum eigenvalue
nλ . The 

reason why Krylov subspace methods is used is that it is when the matrix in question is real and 
symmetric the lanczos algorithm provides an efficient method for producing an orthonormal 
sequence of vectors which provides a basis for an appropriate Krylov subspace (Chris C. Paige 
1995). 

2. If the minimum eigenvalue is negative, the symmetric matrix C is not positive definite. We, then, 
correcting the matrix by adding 2 nλ and a small number 0.02ε = to the diagonal.  

3. Move to the next node, and build another new big matrix, calculate the approximate minimum 
eigenvalue, check, if it is not positive definite, correct the diagonal element in the diagonal to 
make sure it is positive definite. 

Test Case 

A synthetic 2D data is considered to test this method (Figure 1). In this case, there are 18 data in the search 
neighborhood, and the fairly large gird has a discretization 16 by 16 as showing. In the search 
neighborhood, we assume there are there 3 variables u, v and w. and they have a specific correlation 
matrix. They have three variogram models for this 2D case. For u variable it has the variogram model 

100( )u aSph hγ == . 

For v variable it has the variogram model: 

100( )v aExp hγ ==  
For w variable it has the variogram model: 

125( )w aSph hγ ==  
The cross-variogram of uv is: 

2
u v

uv uv
γ γγ ρ +

= i
 

The cross-variogram of uw is: 

2
u w

uw uw
γ γγ ρ +

= i
 

The cross-variogram of vw is: 

2
v w

vw vw
γ γγ ρ +

= i
 

The big covariance matrix is built using the method of block LU simulation showing above. This big 
matrix is 102 by 102. After building the matrix the minimum eigenvalue are calculated, which is -1.049, 
then we adding two times of the minimum eigenvalue -1.049 plus the e=0.02 to the diagonal elements of 
the matrix. After calculation the minimum eigenvalue is 0.00107. So we make sure that the matrix is 
positive.  From this simple test, we want to known the time consumption if we do the LU decomposition 
1000 times. The time is also captured, that is 7644 seconds. 

Conclusion and Future Work 

A new algorithm is proposed by using the k direct variogram and the correlation matrix. The minimum 
approximate eigenvalue is calculated by the Krylov subspace algorithm and the correction matrix is made 
by adding two times of the approximate eigenvalue and a small number. The future work is to focus on the 
program to implement of this algorithm. Also we notice that the C22 matrix in each time is almost the 
same, how to iterative update this to next grid could also improve the CPU time. 
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Figure 1: The location map of the synthetic data. 

 


