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The variogram is central to any geostatistical study. Due to limited data available in the early stages of
modeling, there is considerable uncertainty in all statistical parameters including the variogram. The
uncertainty in the experimental should be quantified and transferred into subsequent modeling. A global
simulation approach could be used for this purpose. Alternatively, an analytical approach based on the
variance—covariance matrix of the experimental variogram values is developed. Experimental variogram
uncertainty is transferred to variogram model uncertainty by fitting models to many realizations of the
variograms. These realizations are used in estimation and simulation. Robust estimates and local
uncertainty is calculated in the presence of variogram model uncertainty.

Introduction

Most geostatistical studies require a variogram model; however, a reliable variogram is difficult to infer in
presence of sparse data. Fair uncertainty predictions and robust estimates motivate the quantification and
use of variogram uncertainty in estimation and simulation. Variogram uncertainty has been considered by
different authors. Webster and Oliver (1992), Miiller and Zimmerman (1999) and Bogaert and Russo
(1999) measured the variogram uncertainty in sampling schemes and suggested different methods to
minimize this uncertainty. Cressie (1985), Ortiz and Deutsch (2002), and Pardo-lgizquiza and Dowd
(2001) suggested similar expressions for the covariance matrix of experimental variogram estimates to the
ergodic variogram (Marchant and Lark 2004).

The semivariogram (often called the variogram for brevity) is defined under a second order stationarity
assumption as (Matheron, 1971)
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It is estimated by the method of moments (Journel and Huijbregts, 1978):
N(h)
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where N (h) is the number of pairs of values for the separatlon vector h .

For a fixed set of K lag vectors, the variance—covariance matrix of the experimental variogram is a KxK
matrix X . The pg element is (Marchant and Lark, 2004):

[£],, =Cov[ (). 7(hg )] (3)
The diagonal elements give the variance of the variogram estimates:
[):]pp = Cov[?(hp),?(hp )} = Var(}?(hp)) (4)

This matrix could be calculated with a multivariate distribution model or predicted with simulation. The
data are transformed to be Gaussian in both methods. Moreover, a base case initial variogram must be
calculated and modeled. In the analytical method, the variance-covariance matrix between the variogram
lags is calculated with Matheron’s expression of fourth order Gaussian moments (Matheron, 1965). The
GSLIB (Deutsch and Journel 1998) gamv program is modified to calculate the variogram variance-
covariance and correlation matrices based on an initial variogram model. The program gamul fits a
Gamma distribution to the distribution of variogram values at each lag.

The second method is based on unconditional simulation. GSLIB (Deutsch and Journel 1998) gamv and
lusim programs are combined. The program gamu2 uses an initial variogram model to generate an
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unconditional simulation at the data locations. The experimental variogram is calculated with the simulated
data at each realization. This approach is similar to the one developed in Ortiz and Deutsch (2002).

The variogram uncertainty is transfered to variogram model uncertainty by fitting variogram models to
each one of the variograms calculated from the simulated data with the same sample data configuration.
Different simple Kriging estimates (SK) are calculated with each variogram to get local uncertainty.
Sequential Gaussian simulation (sgs) is also used to generate different realizations with the resulting
variogram models to get more robust and realistic spatial uncertainty.

Analytical Method

The expected value of 7(h) for each lag distance h is equal toy(h). From the definition of covariance

(2] = E[?(hp)?(hq )]_y(hp)y(hQ) ()
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Assuming that the regionalized variable is multi-Gaussian, the variogram uncertainty can be calculated
from theory. Expanding expression (6), the covariance can be written as a sum of fourth order moments:
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This covariance is called a quadratic covariance (Matheron, 1965) and it can be calculated if Z(u;),

Z(u;+hy), Z(u;

order moment can be calculated using the pair wise covariance values as follows:
E {21222324} =CppCs4 +C13Co +C1yCos ()]
So, Equation 7 can be calculated as below:

2 2
E{[z(ui)_z(ui+hp)] [2(u;)-2(u;+hy)] }
[C11Ca3 + C13Cys +C13Ci3] +[CriCay + CraCuy +C14Crs ] = 2[C11Cay +C13Cy4 + CpyCis] 9)
= +[C22C33 +Cp3Cp3 + C23C23] + [C22C44 +CpCo + 024024]_ 2[(:22(:3.4 +CpCo + C24023]
-2 [CIZCSS +Cp3Ch + C13C23] -2 [C12C44 +CuCoy + C14024] + 4[C12034 +Cp3Co + C14C23]
Where:

) and Z(uj+h,) have a multivariate Gaussian distribution. In such case, any fourth
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Cas = Cov| Z(u;+hg),Z(u;+hy )]

A FORTRAN code, Gamul is provided to calculate this expression. The ergodic variogram function is
required as an input. This is taken as the fitted variogram model.
Davis and Borgman (1982) show that the distribution of the random variable,

v(h)—v(h)
Var{7(h)}
converges to a standard normal distribution, N(0,1), as the number of data increases to infinity. Several
authors (Cressie, 1985; Ortiz and Deutsch, 2002; Pardo-lgizquiza and Dowd, 2001) assumed the

distribution of each lag is Gaussian, and defined by a mean corresponding to the ergodic variogramy(h),
and the variance of each lag, given by equation (4).

(10)

Rather than assuming a Gaussian distribution for each ?(h) , We use a multivariate two parameter (shape

and scale) Gamma distribution that is more flexible, since a gamma distribution is a general form of a
normal distribution. This distribution has only positive values that is appropriate for the squared
differences of the variogram. It is also asymmetric with flexible ability to fit the actual distribution shape
of squared differences. Consider a Gamma distribution for each lag:

E{Zl} = mi :’Y(hl)

R (z)~T(m; o)
Where y(h) is the variogram model, X is the variance covariance matrix of variogram, and nlag is the
number of lags.

i=1...,nlag

To simulate realizations of the variogram, a multivariate normal distribution is generated and each of
distributions is back-transferred to a marginal Gamma distribution. Assume Y is a multivariate normal

distribution: Y = MVN_,, (M, X) where:

m; Y(hl)
h
M= my | “/( 2)
m
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Cholesky Decomposition is used to generate Y, :

*=L.U )
I=1,...,nsim
Y| = L.W|
Where,
Wi
Wy
W| = :
Wnlag
w~N(0,1)
Cov{w,w}=1
Then, all marginal normal distributions are back-transformed to Gamma distributions:
Z,=F*(G(Y;));i=1...,nlag (12)

Where, G is the Normal Cumulative distribution function and F* is the Quantile function of the lag
specific Gamma distribution. The step by step procedure:

e Transform the original data to normal scores.

e Compute an experimental variogram, then fit an initial variogram model,

e Compute the required fourth order moments to establish the uncertainty at each lag,

e Generate multivariate normal distribution of correlated variogram values at different lag distances
by LU simulation, and then

e Back-transform these values with the Gamma distribution to the original units.

The correlation coefficient between lags may change slightly during back transformation and could be
checked afterwards.

Variogram Uncertainty via Global Unconditional Simulation

A Gaussian based simulation algorithm can be used to simulate multiple realizations of the original variable
at the data locations. The experimental variograms computed from the simulated realizations provides a
direct assessment of variogram uncertainty. The GSLIB (Deutsch and Journel 1998) gamv and lusim
programs were combined. GamuZ2 program unconditionally simulates at the data locations with the initial
base case variogram model; new experimental variograms are calculated for each realization. This method
is very fast and does not require assuming a distribution at every lag. The steps of this method are :

e Transform the original data to normal scores,

e Compute an experimental variogram, then fit an initial variogram model,

e Generate a multivariate normal distribution of correlated values at sample locations
Y = MVN, 4, (0,C) where, C is covariance matrix that is calculated with initial variogram
model.

e Calculate new experimental variogram at each realization with generated values.

The analytical model provides more insight into the uncertainty and the model assumptions; however, the
brute-force simulation approach leads to essentially the same result.

Case Study
A subvertical tabular deposit is drilled to provide data on vein thickness and grades. The thickness values
are used here. The sample locations are presented in Figure 1. Figure 2 left shows the histogram of

thickness in original units. The following isotropic variogram model is fitted to the omni-directional
experimental variogram of the normal score transformation of thickness:

310-4



h
h)=0.15+0.85.Exp| — 12
v(h)=015+ xp(zso] (12)

The experimental variogram and fitted model are shown in Figure 2 right. Figure 3 shows the matrixes of
correlation coefficient of lags which were calculated analytically by gamul program on left and global
simulation method with gamu2 on right considering the variogram model and generating 1000 realizations.
There are some slight differences between these two methods in this case study that may cause by
multiGaussian assumption of Matherons forth order moment in theoretical method. This data set probably
is not fully multiGaussian.

Figure 4 left shows the experimental variograms calculated from the generated gamma distribution and on
the right, variograms calculated from global unconditional simulated values.

100 Variogram models were fitted to each of the experimental variograms generated with the simulation
method with a weighted least squares criteria by a semi-auto variogram modeling software; Figure 5 left
shows the fitted variogram models (gray lines), average of all fitted variograms (red line) and the initial
variogram model(blue line). There is slight difference between average variogram and initial variogram
model. To get better result, more variogram should be generated and fitted.

The fitted variogram models have different sill values which show uncertainty in the data variance. To
prevent interference of variance uncertainty at variogram uncertainty, we standardized all fitted variograms;
CO0 and C were divided by sill (implicit variance). Figure 5 right shows the standardized fitted variogram
models. As it is shown, the standardized variograms skewed from initial variogram model and the
difference is more significant.

Histograms of lags calculated with the analytical method (gamul) is presented in Figure 6. Gamma
distributions are nicely fitted and the shapes of distribution at each lag are very similar in these two
methods.

Histograms of variogram parameters and their relationships are presented in Figure 7. Figure 8 shows first
10 variogram realizations, variogram model and standardized model. Figure 9 shows simple kriging maps
with different variogram models, kriging result are the same in standardized and unstandardized variogram
models in Gaussian space. Variogram uncertainty has been transferred through kriging results. Variogram
of this data set is quite uncertain and as it shown from Figure 9, this uncertainty has an impact on kriging.

Sgsim (Deutsch and Journel 1998) has been run for this data set with considering variogram model
uncertainty. 100 realizations have been generated for each of variogram models. Figure 10 shows 10 first
realizations which are generated with different unstandardized variograms on left and standardized
variogram models on right.

Discussion

To compare the results with common uncertainty assessment methods, sgsim program was run with the
initial variogram model to generate 1000 realizations. Variogram reproduction is presented in Figure 11.
Simulation with unstandardized variograms reproduced variograms better then using standardized
variograms. This data set has a clear trend and it is simulated by sgsim with initial variogram model. This
trend is models with standardized variogram. Using standardized variograms reproduced histogram better
that usingsedam miy unstandardized variogram.

E-type mean, variance, P10 and P90 of sgsim with varying variograms and considering only the initial
variogram are presented in Figure 12. Uncertainty has increased when accounting for the uncertainty in the
variogram and this is much clearer in Figure 13 which shows the histogram of E-type mean, and variance,
P10 and P90 of sgsim realizations; using unstandardized variograms transfer variance uncertainty to the
model, variance of the resulting variance is increased (0.10 vs. 0.6).
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Conclusions

The two methods presented in this paper allow assessing the uncertainty in the variogram model. The joint
uncertainty between the variogram lags is accounted for, that is, uncertainty in the fitted variogram model.
This requires accounting for the covariance between variogram lags and not only assessing the variance at
each lag. This is an interesting result as it allows transferring the uncertainty to the subsequent steps of the
modeling (either kriging or simulation). The methodology presented includes this step of transferring the
uncertainty to the subsequent modeling steps and it was shown that the resulting variogram is properly
reproduced. Both analytical and numerical methods need to transfer data to Gaussian space. Different sill
values in variogram models shows variance uncertainty, this also can be transfer to the model by using
unstandardized variogram models. Using different variograms in SGS may cause unstable results and user
should generate sufficient number of realizations to get more stable results. 100 realizations for each
variogram are good enough to transfer variogram model uncertainty.
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Figure 1. Location map of samples and thickness content taken from the database red.dat.
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Figure 4. Generated experimental variograms and the initial variogram model; left: Theoretical method and
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right: Global unconditional simulation Method

Figure 5. Fitted variogram models (gray lines), average of variograms (red line) and the initial variogram
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310-10



120

Variogram Realization #01

120

T T T 1
o. 50. 100. 150. 200. 250. 300.

Distance

Variogram Realization #03

=2
i

&

8

8

120

T T T
50. 100. 150. 200. 250, 300.

Variogram Realization #05

T T T
o. 50. 100. 150. 200.

_ Variogram Realization #07

Distance N
-

120

T T T 1
o. 50. 100, 150. 200. 250, 300.

Distance

Variogram Realization #09

Figure 8. Generated experimental variograms and fitted variogram model for 10 first realizations.

T T T 1
o. 50. 100, 150. 200. 250, 300.

Distance

310-11

120

Variogram Realization #02

040

000

°
8

120

T T T T 1
100. 150. 200. 250. 300.

Distance

Variogram Realization #04

040

000

1.2

8

T T T T 1
50. 100, 150. 200. 250. A0

Distance /

Variogram Realization #06 /

040

000

°
8

120

T T T T 1
100, 150. 200, 250. 300.
/

Distance \

Variogram Realization #08
/ g

000

1.2

8

o
8

T T T T 1
100. 150, 200, 250. 300.

Distance

Variogram Realization #10

000

o
8

T T T T 1
100. 150, 200, 250. 300.

Distance



Kriging Realization No. 2

Kriging Realization No. 1

Elve.

500000

500000
e Northing

10000 Northing

Kriging Realization No. 4

Kriging Realization No. 3

Elve.

Northing

Northing

Kriging Realization No. 6

Kriging Realization No. 5

2045000

500000
Northing

Northing

Kriging Realization No. 7 Kriging Realization No. 8
5

o

Elve.

500000

600000
Northing 2015000

Northing

Kriging Realization No. 10
o

Kriging Realization No. 9

Elve.
Elve.

500000

500000
2010000 Northing 2015000

2010000 Northing 2045000

Figure 9. Kriging estimate results with different variogram models
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Figure 12. E-type Mean, variance, P10 and P90 maps; Left: W/ unstandardized variograms, Middle:
Standardized Variograms and Right: Sgsim W/ initial variogram model
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Figure 13. Histograms of Mean, Standard deviation, P10 and P90 values; Left: W/ Unstandardized
Variograms, Middel: Standardized Variograms and Right: Sgsim W/ initial variogram
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