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Sources of Non – Stationarity in the Semivariogram 
Miguel A. Cuba and Oy Leuangthong 

Traditional uncertainty characterization techniques such as Simple Kriging or Sequential Gaussian 
Simulation rely on stationary assumptions of first and second order to describe in a numerical manner the 
behavior of particular variables of natural events such as a mineral deposit. But natural events are non – 
stationary phenomena. One of the most common solutions to this problem in practice is sub – domaining 
that consist of separating the mineral deposit in sub – groups that are more pseudo stationary, generally 
based on the physical understanding of the natural event.  Even when sub – domaining has been carried on 
with all the available information it does not guarantee that the influence of the non – stationary features 
on them have been completely mitigated. In this document a way to measure the effects of non – stationarity 
over a domain is presented. It can be used at each stage of the sub – domaining process in order to verify 
how the non – stationary conditions still affects the sub - domains or to be aware of it in order to find 
appropriate strategies to model them. This is achieved through the interpretation of the features that the 
experimental semivariogram calculated via the method of moments capture from the dataset that represents 
a particular domain. 

Introduction 

The SK system relies on the semivariogram model to describe the spatial structure of the conditioning data 
and the semivariogram model is a function that describes the spatial continuity of a RF that obeys the 
intrinsic hypothesis and is first and second order stationary. The conditioning data should be part of a 
realization of that RF. Then the SK system will estimate the parameters of the conditional distributions 
under those conditions. Since SK minimizes the variance of the estimation error there is no better approach 
for it. Recall SGS relies on the SK system to get the realization maps. 

Unfortunately the datasets sampled from natural events are non stationary, the domains are finite and the 
intrinsic hypothesis is vaguely satisfied. A consequence of estimating or simulating in such environment is 
the conditional distributions or the realization maps will be unrealistic so that they will not have any use for 
an economic evaluation of mineral deposit. It is necessary to minimize the impact of the lack of those 
conditions before proceed to apply traditional estimation or simulation techniques such as SK or SGS. 

The impact of lack of the intrinsic hypothesis is small compared to the lack of the stationary conditions of 
the dataset and the domain. Prior of estimating or simulation the dataset should be conditioned to pseudo 
stationary conditions of first and second order. One way to do this is to perform sub – domaining which is 
to separate the domain is sub sector where the behavior of the variable to be modeled is fairly close to 
stationary, proceed to model it in more stable domains and join all the parts or sectors to get the final 
model. There also other techniques that modify the non – stationary space e.g. trend removing and 
transform it to a more stationary environment for modeling, and others that deal with the intrinsic 
assumption where they use non – parametric covariance structures. 

Sub – Domaining 

Uncertainty characterization of mineral deposits is an important stage in the mining industry. Geostatistical 
methodologies are used to build numerical models that characterize uncertainty parameters globally and 
locally which are required by mine planners for economic evaluation of the potential mine project. 
Traditional geostatistic methodologies both for estimation and simulation rely on the kriging system. The 
kriging system is intended to minimize the estimation variance under the assumptions of first and second 
order stationarity and the intrinsic hypothesis of the RF. But unfortunately the natural events that are 
involved in the genesis of mineral deposits are not stationary and modeling them under such assumptions 
could lead to wrong results. 
An option to deal with this problem is to sub – divide the mineral deposit in sub – domains where the non – 
stationary features impact less. At this point it is important to focus on first and second order stationary 
features usually in Gaussian units. Ordinary kriging is widely used in mining for estimation purposes and in 
this case sub – domaining focus mostly on the second order stationary assumption trying to delineate 
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geologic unit types with high, medium and low grades of metal content taking into account the proportional 
effect. On the other hand if simulation is required for economic analysis first and second order stationary 
features in Gaussian units are focused during the sub – domaining process. 

One of the common natural processes that could not be modeled under stationary assumptions is the 
transition of rock types such as mineralized and non – mineralized. This transition could be hard of soft. A 
soft transition is the gradual change in the mean and local variability of the variables being analyzed as the 
position changes from one rock type to another (see Figure 1 – 4); the gradual change is not necessarily 
linear for the mean neither for the local variability. It could also happen that the transition is abrupt which 
could be a consequence of structural features such as faults or post mineral geologic events. The latter one 
would be a scenario with presence of independent domains (see Figure 1 – 3). Most of the information that 
is involved in sub – domaining is the rock type logging data. From a geologic perspective rock type logging 
could be detailed or generalized. If detailed from a geostatistical perspective it would be possible to find 
domains fragmented in many rock types. On the other hand if generalized two or more geostatistical 
domains could be grouped in a single rock type. Even if in the generalized domain the mean grade seems to 
be consistent along the domain the local variability could be different and under this condition assuming 
stationarity would be a bad decision (see Figure 1 – 2). Figure 1 shows suitable simplistic approach for the 
RV behavior to model natural events and in reality they are way too much complex or intractable. 

 
Figure 1, schematic 1D Gaussian RV environments: (1) first and second order stationary; (2) first order 
stationary but locally variable variance with two first and second order stationary domains (a), (c) and one 
first order stationary with variable local variance (b); (3) non – stationary with two independent first and 
second order stationary domains (a) and (b); (4) non – stationary with two first and second order stationary 
domains (a) and (c) and one non – stationary domain (b). 

In estimation or simulation the aim is to assess uncertainty, it is achieved through the calculation of the 
mean and variance at the locations of unknown values conditioned to available data from the domain. 
Estimating or simulating in a non – stationary environment does not guarantee that the obtained results are 
correct for modeling natural events. Since SK and consequently SGS rely on stationary and intrinsic 
hypothesis assumptions, even when the estimated or simulated mean values could be somehow correct due 
to strong presence of conditioning data the estimation variance is not correct, it could be underestimated or 
overestimated according to the underlying behavior of the variables in the domain (see Figure 1). On the 
other hand the intrinsic hypothesis impact could be considered small compared with the impact due to the 
lack of pseudo stationary conditions. 

Semivariogram in a Stationary and Non – Stationary Environments 

The variogram is the measure of variability between two point values z(u1) and z(u2) at two different 
locations. (Barry 2004) Analytically the variogram represent the variance structure between two RV at 
different locations. It can be expressed as (Cressie, 1993) the variance of the difference of two RV spatially 
located at locations u1 and u2 (1). In order to calculate it many realizations of the two random variables 
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Z(u1), Z(u2) would be required, unfortunately in practice only one is available which is the conditioning 
data. 

 ( ) ( ) ( ){ }1 2 1 22 , var Z Zγ = −u u u u
, 1 2 , d∀ ∈u u   (1) 

To overcome that problem the intrinsic hypothesis is assumed. (Matheron 1971) The RF Z obeys the 
intrinsic hypothesis if the variance of the spatial difference Z(u)–Z(u+h) exist and is independent of 
location u but are function of the separation vector h. The variance of the spatial difference is the 
variogram expression (2) and the expected value is a function of the separation vector and assumed to be a 
linear drift (3). Removing the linear drift from Z(u) for all the locations in the form R(u)=Z(u)–m(u) the 
expected value of the spatial difference of the residuals R(u) become zero and the variogram expression can 
be written as the expected value of the squared spatial difference (4). 

 ( ) ( ){ } ( )2var Z Z γ− + =u u h h   (2) 

 ( ) ( ){ } ( )E Z Z m− + =u u h h   (3) 

Removing the drift component from the RV Z(u) is equivalent to make the RF first order stationary. Recall 
the RF R should obey the intrinsic hypothesis.  

 ( ) ( ) ( )R Z m= −u u u  

Then the variogram is expressed as follows: 

 ( ) ( ) ( ){ }2
2 E R Rγ = − +⎡ ⎤⎣ ⎦h u u h   (4) 

The difference between expression (2) and (4) is in the mean value of the RV. (Gneiting and others, 2001) 
regardless of the definition of variogram or semivariogram due to the 0.5 factor, they distinguish between 
centered and non – centered variograms. Expression (2) is called centered and (4) is non – centered. In 
order to link the semivariogram expression with the covariance and variance it is necessary to make 
assumptions of second order stationarity in R(u). Then the semivariogram can be written in terms of the 
difference between the variance and the covariance (5). 

 ( ) ( )2 cγ σ= −h h    (5) 

 ( ) ( )( )2 1γ σ ρ= −h h   (6) 

In equation (5) γ(h) is the semivariogram, σ2 is the variance and c(h) the spatial covariance and in 
expression (6) ρ(h) is the spatial correlation coefficient. The semivariogram, the spatial covariance and the 
spatial correlation coefficient are function of the separation vector h. Recall the spatial covariance at h=0 is 
the variance therefore at no spatial correlation the semivariogram takes the value of the variance. The 
spatial correlation coefficient at h=0 is 1. 

Due to the Intrinsic Hypothesis the kriging estimation variance is dependent of the spatial configuration of 
the conditioning data rather than variability patterns as a function of location u in the domain. In a mining 
project analysis the estimation variance is often used as a parameter to rank uncertainty so this value could 
be misleading if not used properly. 

Since first and second order stationary assumptions and intrinsic hypothesis are assumed these three 
features have an impact on the modeling of the required variables and uncertainty characterization in the 
domain. The natural event has to be assumed that follows a behavior like Random Function under the three 
previous assumptions. Unfortunately the spatial features of the natural events do not follow any of those 
assumptions and they have to be accommodated in a suitable manner so that the non – stationary features 
do not affect too much the domain. Prior to modeling it is important to make the big domain as much 
stationary as possible, some techniques to achieve this are sub – domaining and trend modeling. And to 
deal with non – stationary covariance or semivariogram functions many approaches have been developed, 
see for example Sampson and Guttorp 1992, proposed to move from an initial “geographical” dimension to 
a “dispersion” dimension where the intrinsic hypothesis is more suitable. 
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In practice expression (1) makes more sense in order to model natural events. The spatial variability is a 
function of the location and between two locations. One simple example is the presence of anisotropic 
behaviors where the spatial correlation in the direction of major continuity is different to the minor’s. The 
use of anisotropic ratios is an attempt to convert from a space where the intrinsic assumption is not valid to 
another one where it is. But natural events are more complicated than this. In addition to that there is no 
condition in the natural events that could explain that the anisotropic behavior is elliptical. It is just a 
simplistic approach to average local spatial continuity structures. 

Impact of non – stationarity in experimental semivariogram calculation 

From expression (4) the estimator of the semivariogram is (7) also known as method-of-moments 
(Matheron 1962) which can be also interpreted as the average value of the orthogonal distances of the data 
pairs to the 45˚ line in the h – scatter plot. 
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Where n(h) is the number of available pairs for the separation vector h. r(ui) and r(ui+h) are the i-th data 
pair of the initial dataset at the head and tail of the separation vector h respectively. 

The experimental semivariogram plot consists of many different experimental semivariogram values 
calculated for different separation vector (hi, i=1,..,n) in ascending order of distance for one single direction 
for directional semivariogram plots and in all direction for omnidirectional semivariogram plots. In 
presence of sparse data the separation vector h is took with tolerances. In order to calculate the 
experimental semivariogram the initial dataset r0 with mean m0 and standard deviation s0 is split in two 
parts or sub datasets ru and ru+h with mean mu, mu+h and standard deviation σu, σu+h respectively which 
correspond at the two extremes of the separation vector h. The representative dataset rh for each separation 
vector h consist of the union of the two sub datasets rh=ruUru+h and for small separation distances the initial 
dataset and the representative dataset tend to be the same r0≈rh but as the distance of the separation vector 
increases they tend to be different and r0≠rh since the sub datasets have less information and the 
experimental semivariogram value is less reliable. Notice the initial dataset r0 is not influenced by any 
declustering weights, it is assumed to be fairly representative of the domain. 

At this point the available dataset for calculating the experimental semivariogram is limited or finite and 
the number of available pairs of samples for each configuration of the separation vector is an issue now. 
Even though stationarity is assumed in a finite domain the mean and variance are not constant for the entire 
domain they are a function of how representative the sub datasets at the head and tail of the separation 
vector h are. These are some features of finite domains that cause problems with the stationary 
semivariogram features, like the number of available samples for each separation vector and presence of 
sparse sampling data. 

From Figure 2 when Gaussian space is assumed the calculation of the semivariogram estimator for each 
separation vector h to be according to expression (7) should produce a symmetric h – scatter plot and the 
data pairs should follow a bivariate Gaussian distribution. In presence of enough data the two sub datasets 
are expected to have similar, means equal to zero, variances and marginal distribution shapes closely to 
Gaussian shape, equal to one. In general the only parameter that is expected to change is the spatial 
correlation coefficient ρ(h). In this context the notice that the covariance plot is similar to the correlograms. 
Unfortunately those required conditions are not present in real data but their impact can be quantified 
numerically through the semivariogram expression. 
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Figure 2, ideal h – scatter plot of semivariogram calculation for a dataset which follows a Gaussian 
distribution. In Gaussian units the data pairs should lie in a Gaussian bivariate joint distribution and the 
spatial continuity is measured by the correlation coefficient which is a function of the separation vector. mu, 
mu+h are the means and σu, σu+h are the standard deviations of the distributions of the sub – datasets at the 
extremes of the separation vector h. 

The influences of the mean and variances of the sub datasets at the two extremes of the separation vector h 
can be calculated from expression (7). Expanding the initial expression then adding and subtracting their 
respective average values of the sub datasets ru and ru+h it is possible to express (7) in terms of covariance, 
means and variances of the two sub datasets as follows: 
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The semivariogram expression is written as a function of the differences of standard deviations and 
difference of means of the sub datasets at locations u and u+h and the covariance (8). 

 ( ) [ ] [ ]2 21 1ˆ
2 2

m m cγ σ σ σ σ+ + += − + − + −u u h u u h u u h hh   (8) 

Or the correlation coefficient (9) for a separation vector h. 

 ( ) [ ] [ ] ( )2 21 1ˆ 1
2 2

m mγ σ σ σ σ ρ+ + += − + − + −u u h u u h u u h hh   (9) 

From equation (8) the semivariogram expression consists of four components. (a) Half of the average of the 
squared difference of their respective standard deviations plus (b) half of the average of the squared 
difference of their respective means plus (c) the product of the two standard deviations of the sub datasets 
of the head and tail of the separation vector minus (d) the covariance of the two sub datasets separated by 
the h vector. Notice that when the means and variances of the distributions of the two datasets are fairly 
equal (σu≈σu+h≈σ and mu≈mu+h≈m) the experimental semivariogram expression (8) relies on the spatial 
covariance and in expression (9) on the spatial correlation coefficient which are the stationary forms of the 
semivariogram. 
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In a stationary environment negative correlation coefficients are interpreted as if the initial dataset is 
affected by a large trend pattern (mu≠mu+h) and are thought to be the reason why the experimental 
semivariogram values take values greater than the variance of the dataset. (Gringarten & Deutsch 2001) 
Trends in the data can be identified from experimental semivariogram, which keeps increasing above the 
theoretical sill. In simple terms, this means that as distances between data pairs increase the differences 
between data values systematically increase. But in practice this is not necessarily correct since the 
correlation coefficient ρ(h) is a function of the two sub – datasets separated by h, the impact occur when 
differences in mean and variances of the two datasets are different (9). 

In presence of sparse data the data pairs are built using tolerances in the search of pairs, this makes that for 
one data point for a particular lag distance it could be paired with more than one sample. In that case the 
distribution of the sub dataset at the head of the separation vector h is the result of the weighting each 
sample location by the number of repetitions in the pairing due to the search tolerances. This value is not 
fairly correct, it depends on the tolerances. For small tolerances the semivariogram calculation is more 
representative. Big tolerances tend to mask spatial features of the dataset e.g. hiding of the anisotropic 
features of the domain. 

Case Study 1 

The case study is a 1D unconditional simulated dataset of 1000 data points regularly spaced with a 
spherical semivariogram model of 25 units of range. Three different trend cases were added to the initial 
dataset in order to describe them via the experimental semivariogram expression. The first trend component 
is a linear trend in the form y=ax+b with a negative slope along all the dataset. The second trend 
component is a symmetrical convex shape trend. For the third case the mean component remains the same 
but the variance of the two halves of the dataset were modified (see Figure 3). 

 
Figure 3, Initial dataset influenced by linear trend, parabolic trend and local variability in variances. 

Experimental semivariogram values can be calculated using expressions (8) or (9) so that the 
semivariogram value is divided in three parts: 1) the mean component, 2) the variance component and 3) 
the stationary component. The semivariogram plots for each case are calculated for the half of the size of 
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the domain as a maximum separation distance in order to have enough data pairs that represent the dataset. 
The contributions of each component of the experimental semivariogram are represented as regions of 
different color (see Figure 5). 

Even when the initial dataset is supposed not to have any influence of mean trend or variance trend it can 
be seen that there is presence of those components in the semivariogram plot. This effect can be seen 
comparing the two distributions of the first and second half of the entire initial dataset (see Figure 4). 
Notice that even when the initial dataset lies on standard normal distribution N(0,1) it does not necessarily 
mean that locally is the same and that behavior can be captured by the experimental semivariogram. For 
comparison those variation in the initial dataset are assumed negligible, but that will be captured by the 
experimental semivariogram. 

 
Figure 4, distribution of the first 500 data points in the dataset (left) and 500 last data points (right) 

In three out of the four cases the experimental semivariogram capture the first and second order non – 
stationarity effect in their respective datasets. There is particular case where the contribution of the mean 
trend component cannot be seen in the experimental plots. It happens when the mean trend component is 
symmetric (the convex shape trend). The mean difference component occur when differences of the means 
appear as the separation distance increases and in this case since the trend component is symmetric the 
means of the sub datasets are cancelled (mu=mu+h). On the other hand notice that under that condition the 
only component that remains is the stationary component and the trend is capture under the stationary 
conditions of semivariogram (experimental semivariogram values greater than the variance of the initial 
dataset). This condition is interesting since in presence of directional symmetric mean trend shapes the 
stationary conditions of the semivariogram are valid again. This can also be seen in the h – scatter plots for 
each case (see Figure 8, Figure 9, and Figure 10) 

Case Study 2 

The second case study was run with real data for a vertical direction. The Amoco3d.dat dataset consist of 
62 vertical wells with on average 53 samples per well (35 minimum and 66 maximum). There are a total of 
3303 available data points in the dataset. Vertically the separation distance between the samples is one unit 
of distance. 

A vertical semivariogram plot of the porosity variable in normal score units is calculated (Figure 6). Since 
the dataset is regularly spaced in the vertical direction a lag distance interval of one unit of distance is 
chosen so there will not be overlap between pairs. Traditionally it could be inferred that there is a presence 
of a mean trend since the vertical variogram does not reach the sill until the lag interval 38 where γ(38) = 
0.9280 with 950 pairs out of 3241 but there are two trend components that are captured for the dataset. 

The two trend components are present in the initial dataset for the vertical direction (variance trend and 
mean trend) (see Figure 7) and the variance for each location of the semivariogram start to be different 
from the lag 25. It is also important to verify how representative the sub datasets are for each lag interval. 
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Figure 5, experimental variograms for initial dataset and influenced by linear trend, parabolic trend and 
locally variable variance. In the four plots the blue region represents the variation of the mean component, 
the red region the variation of the variance component and the green region the stationary component of the 
experimental semivariogram value. 

 
Figure 6, distribution (left) and vertical experimental variogram (right) for the NS values of porosity 

 
Figure 7, experimental semivariogram of vertical direction for oilsand dataset 
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Conclusions 

The SK system is unbeatable calculating the parameters of the conditional distribution at a location where 
the variable is unknown conditioned to previous existing data. Traditionally the SK system uses a spatial 
variability model that describes the behavior of a RF which is first and second order stationary and obeys 
the intrinsic hypothesis. The estimated parameters of the conditional distribution then are also constrained 
to those conditions; additionally the conditioning dataset should be part of the previously mentioned RF. 
From those conditions the stationary assumptions are usually more important than the intrinsic hypothesis 
assumption since in presence of strong conditioning data the impact of the latter can be considered as 
negligible. 

In a geostatistical analysis the aim is to assess uncertainty. Usually parameters such as mean and variance 
are enough to describe it. In some cases when only the mean is calculated or considered important it could 
lead to a misinterpretation of the geostatistical model results and consequently lead to a wrong decision 
making process in a economic evaluation of a potential mineral deposit project. In that case the 
geostatistical results are obtained but not interpreted correctly. 

Since traditional estimation on simulation techniques rely on stationary assumptions and sampled datasets 
from natural events are not necessarily stationary this approach is a useful tool to measure numerically the 
effects of non – stationarity via experimental semivariogram calculation in the datasets and proceed to 
make decisions about sub domaining or any other data processing techniques in order to make the 
estimation or simulation more consistent with the natural event being modeled. 

Non stationary characteristics present in real datasets that represent natural events can be captured from it 
through interpretation of the many different features of the experimental semivariogram tool comparing 
how different is the calculated from the ideal case. The semivariogram contains enough information to 
describe the spatial continuity beyond the stationary assumptions. 
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Figure 8, h – scatter plots for the initial case with no influence of trend. 
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Figure 9, h – scatter plots for the linear trend case 

 
Figure 10, h – scatter plot for the parabolic shape trend case 


