Application of SGS-GLD to Parameter Uncertainty

S. H. Derakhshan and C. V. Deutsch

The theory of Generalized Linear Distribution (GLD) to parameter uncertainty is discussed in paper 102.
This paper shows the application of GLD. The GSLIB program sgsim is modified to account for
parameter uncertainty. Just 3 lines are added to sgsim parameter file. The new input parameters are the
interested p-value and the standard deviation of the mean which comes from bootstrap or spatial bootstrap.
The modified parameter file is shown along with an applied example.

Introduction

In order to consider generalized linear distribution in sgsim , the code for sgsim is modified. The
parameter file for sgsim gld is shown below:

Parameters for SGSIM GLD
IR R R E R R R SRR SRR R R R R R R R

START OF PARAMETERS:

../data/cluster.dat -file with data

1 2 0 3 5 0 - columns for X,Y,Z,vr,wt,sec.var.

-1.0 1.0e21 - trimming limits

1 -transform the data (0=no, l=yes)

sgsim.trn - file for output trans table

0 - consider ref. dist (0=no, l=yes)

histsmth.out - file with ref. dist distribution

1 2 - columns for vr and wt

0.0 15.0 - zmin,zmax(tail extrapolation)

1 0.0 - lower tail option, parameter

1 15.0 - upper tail option, parameter

1 -debugging level: 0,1,2,3

sgsim.dbg -file for debugging output

sgsim gld.out -file for simulation output

1.0 -standard deviation of the mean (sigma m)

0 -options for GLD; (0O=uniform, l=target)

0.5 - if l=target, give p-value

1 -number of realizations to generate

50 0.5 1.0 -nx,xmn,xsiz

50 0.5 1.0 -ny,ymn,ysiz

1 0.5 1.0 -nz,zmn,zsiz

69069 -random number seed

0 8 -min and max original data for sim

12 -number of simulated nodes to use

1 -assign data to nodes (0=no, l=yes)

1 3 -multiple grid search (0=no, l=yes),num

0 -maximum data per octant (0=not used)

10.0 10.0 10.0 -maximum search radii (hmax,hmin,vert)

0.0 0.0 0.0 -angles for search ellipsoid

51 51 11 -size of covariance lookup table

0 0.60 10 -ktype: 0=8K,1=0K, 2=LVM, 3=EXDR, 4=COLC

../data/ydata.dat - file with LVM, EXDR, or COLC wvariable
- column for secondary variable

1 0.1 -nst, nugget effect

1 0.9 0.0 0.0 0.0 -it,cc,angl,ang2,ang3

10.0 10.0 10.0 -a_hmax, a hmin, a vert

Three lines are added to the basic sgsim parameter file. The program needs the standard deviation of the
mean which can be calculated by using bootstrap, spatial bootstrap, etc, and the p-value which the user is
interested in. The first line asks for the standard deviation of the mean which can be calculated from spatial
bootstrap method (Deutsch, 2004). The second line needs the option flag whether the user is interested in
running the traditional SGS ro the modified version and the third line reads the p-value parameter if the
user has chosen the target option in the second line. The p-value is a fraction between 0 and 1. The p-value
of 0.1 refers to the pessimistic case (low values, P90) and p-value of 0.9 refers to optimistic case (high
values, P10) based on National Instrument 51-101 (NI 51-101) definition of P10, P50 and P90 (Robinson
et. al., 2003)
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Methodology
In this section the methodology which is used instead of uniform distribution to incorporate the GLD in

sequential Gaussian simulation is presented along with an example. At first 7 should be calculated by using
below formula.

I=E{y-[2F(y)—l]}=Ij:y-[2F(y)—1]-f(y)-dy ....................................................... @

The only thing that we need to characterize the quantile function of standard GLD is # by using below
equations.

L o g

n= [IJG(p) ........................................................................................ )
JA-n) +4np -1+

q(p)=F*(p)= (=) Zﬂﬂp L ®3)

The uniform distribution is replaced with this quantile function to draw from the Gaussian distribution in
sequential Gaussian simulation procedure. The slope parameter # is calibrated according to the p-value
which we want. To have high values in model, we need to have # close to 1 and to have low values in
model # should be close to -1. The full theory and description is explained earlier in this annual report.

Example

Amoco 2D data (Chu et al, 1995) is used to apply the methodology. Figure 1 shows the location, PDF and
CDF of the Amoco 2D data. The variogram is calculated and modeled in both major and minor directions.
The variogram model is illustrated in Figure 2. The spatial bootstrap is performed to get the standard
deviation of the mean. Figure 3 shows the distribution of the mean from Spatial Bootstrap. The standard
deviation of the mean is calculated and is equal to 0.06. 7 is calculated to be equal to 1.2204. Therefore the
distribution of # is Gaussian with mean of zero and the standard deviation of g,,/I. One realization is created
using sequential Gaussian simulation with different p-values. It is obvious that small p-values lead to have
a model with low values since we are interested to target the low mean value. Figure 4 shows the simulated
field for 3 different p-values of 0.1, 0.5 and 0.9.

The p-value of 0.1 shows more low values while the p-value of 0.9 shows more high values. The p-value of
0.5 shows the created realization from traditional sequential Gaussian simulation because the p-value of 0.5
gives the 5 parameter of zero and the zero » parameter converts the linear distribution to uniform
distribution. Figure 5 and Figure 6 show the histogram reproduction for 3 different cases of targeted p-
value or 5 parameter. Small p-value corresponds to small negative # parameter and it causes to draw small
values from the Gaussian distribution. In the case of high p-values; because of high positive » parameters
the Monte Carlo method is forced to draw the high values.

In the case of targeted p-value, the global mean, global standard deviation and global coefficient of
variation of the simulated field are calculated for each specific p-value. The plots of these variables versus
the p-value are shown in Figure 7. As we expect the distribution of calculated global mean follows the
Gaussian distribution because of Central Limit Theorem. The variogram reproduction is also checked for
different cases. Figure 8 shows the variogram reproduction for the cases with p-values of 0.1, 0.5 and 0.9.
There are not big changes in the calculated variogram. Although these three different variograms are
coincided each other but there are some minor differences in calculated variograms. High p-values will
cause decreasing the variogram range in minor direction and increasing the variogram range in major
direction but these increase or decrease are minor. It is mainly due to the narrow distribution that #
parameter has.
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Conclusion

Using generalized linear distribution (GLD) instead of uniform distribution in sequential Gaussian
simulation has been presented along with an applied example. The parameter file base on GSLIB format is
presented. The methodology allows us to simulate directly the P10, P50 and P90 or any interested ranked
reservoir models based on the global distribution of the variable of interest. The final reservoir model has
the global mean the same as the quantile value corresponding to the interested p-value from Gaussian
distribution of global mean (Central Limit Theorem). This method honors the global uncertainty very well,
increases the space of uncertainty (for each interested p-value we can create different number of
realizations). This method shows that the traditional sequential Gaussian simulation just generate different
realizations for the p-value of 0.5 (the p-value of 0.5 corresponds to the global mean of the Data because of
Gaussianity).
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Figure 1: The location, PDF and CDF of the Amoco 2D data
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Figure 2: Variogram model in both major and minor directions of continuity for Amoco 2D data
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Figure 3: Distribution of the mean from spatial bootstrap
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Figure 4: One realization from SGSIM with different p-values of 0.1, 0.5 and 0.9 using sequential
Gaussian simulation with GLD for different p-values; all of the parameters to create these realizations are
the same except the p-values
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Figure 5: Histogram reproduction for the p-values of 0.1, 0.5 and 0.9
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Figure 6: The PDF for original data and the simulated values in the case of p = 0.1, 0.5 and 0.9
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Figure 7: Calculated global mean (top figure), global standard deviation (bottom left) and global
coefficient of variation (bottom right) for each simulated field for different p-values
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Figure 8: Variogram reproduction for different p-values of 0.1, 0.5 and 0.9
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